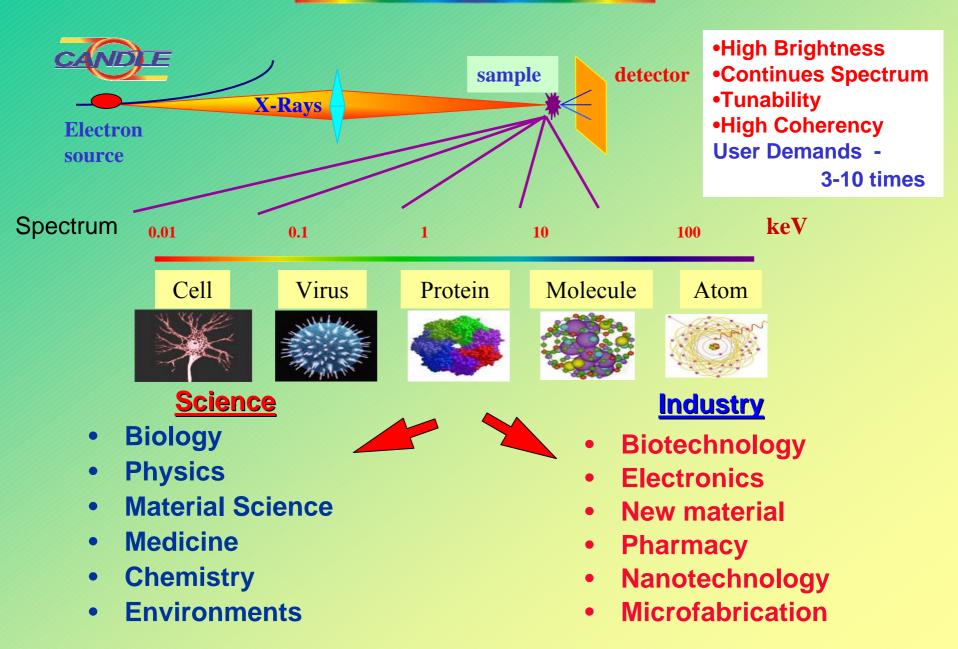
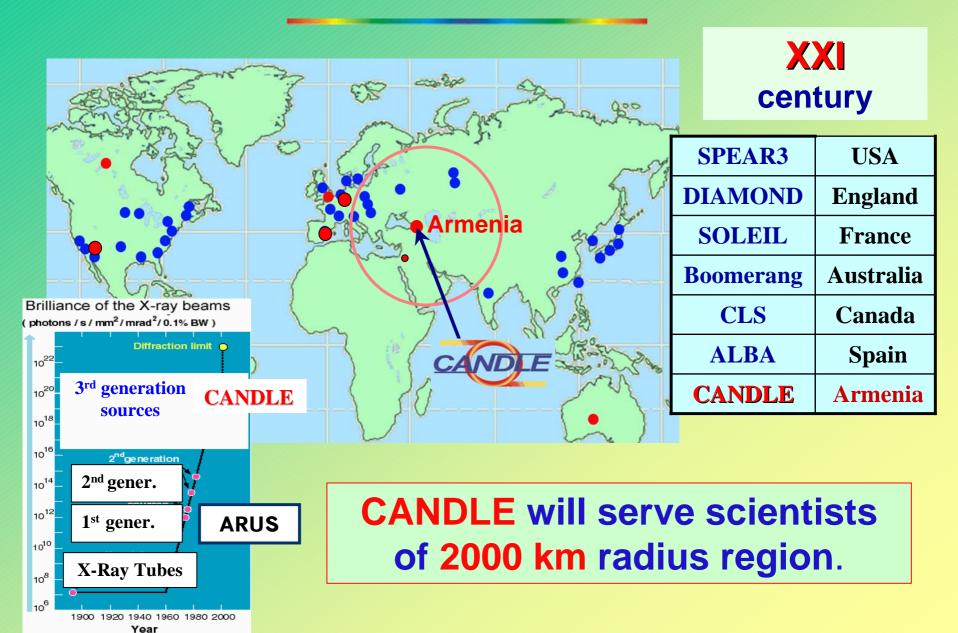
Center for the Advancement of Natural Discoveries using Light Emission

CANDLE Light Source Project in Armenia

Vasili Tsakanov CANDLE-YSU, Armenia

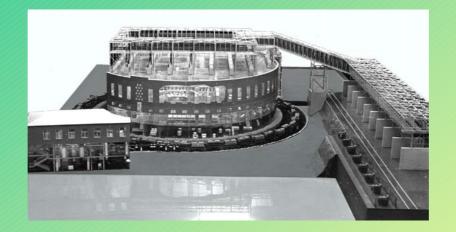

1 June 2009

Center for the Advancement of Natural Discoveries using Light Emission


Contents

- Introduction
- The Project Overview
- Scientific Program
- Laboratory Activity
- International Collaboration
- Summary

Why Synchrotron Light Source?


Why Synchrotron Light Source?

A.I. Alikhanian

A.I. Alikhanov

Construction of 6 GeV synchrotron (1967)

Burakan Observatory

Armenian Nuclear Plant

Why in Armenia ?

ARUS-6 GeV

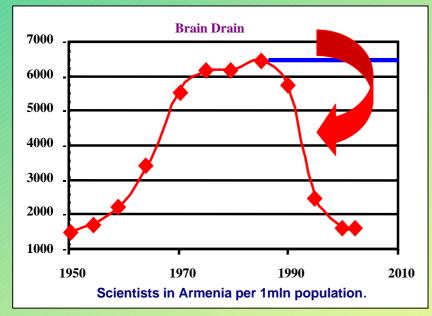
The major achievements in HEP include

- The study of pion photoproduction, eta-meson generation.
- · X-ray transition radiation and XTR detectors.
- · Development of Quasi-Cherenkov radiation.
- Exper. observation of particle channeling radiation in crystals.
- · Development of track spark chambers.

1971-1975 – Three Synchrotron Radiation Beamlines

Lab. of Radiation Solid State Physics

Lab. of Radiation Biophysics

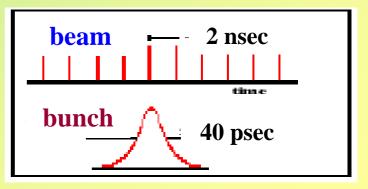

Solid State Dept of Yerevan State Univ.

Scientific Potential

SPIRES

HEP Database-2000

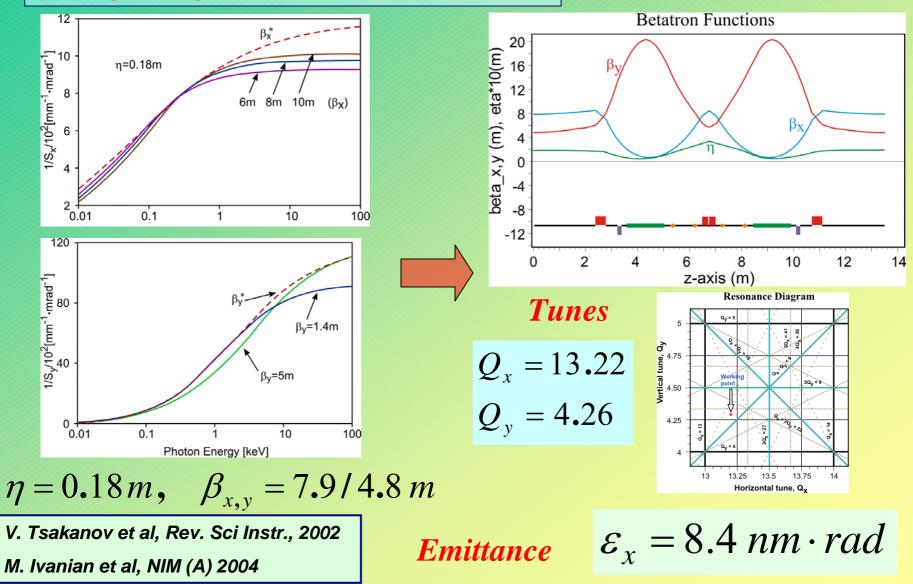
Brain Drain

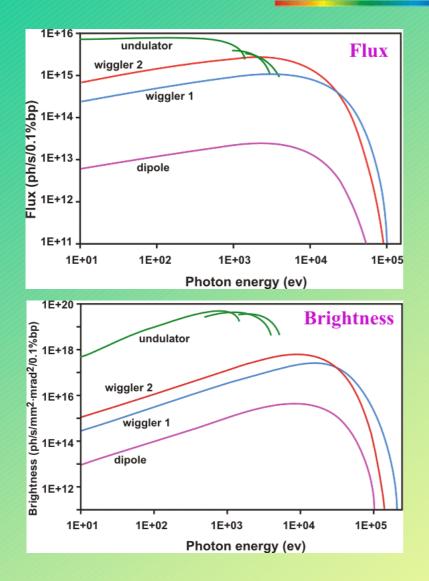


	Total	Population	Papers/
	Papers	(mln)	1mln
USA	150 738	270.3	558
Germany	51 142	82.1	623
France	27 937	58.8	475
UK	27 664	59.1	468
Sweden	5 206	8.8	591
Italy	33 307	58	574
Japan	31 390	126	249
Finland	31 18	5.1	611
Switzerland	33 876	7.3	4 640
Israel	6 2 3 6	5.4	1 154
Armenia	2 929	3.5	813
Russia	48 577	146.8	331
Georgia	1 626	5.7	285
Estonia	180	1.6	112
Belarus	883	10.4	85
Ukraine	4 2 4 1	51.8	82
Kazakhstan	943	17.3	55
Azerbaijan	422	7.8	54
Uzbekistan	887	23	38
Tadzhikstan	99	6.1	16
Turkey	893	63.4	14
Iran	416	64	7

3 GeV CANDLE Light Source

3 GeV Storage Ring
RF Under Beamline
Full Energy Booster Undulator 100 MeV S-Band Linac Undulator Viggler Beamline Viggler 00_20 m

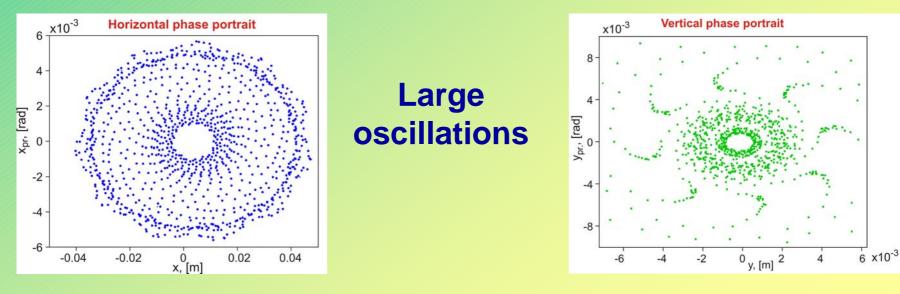

Energy	3 GeV
Current	350 mA
Circumference	216 m
Frequency 4	99.65 MHz
Harm. Number	360
Periods No	16
Straight section	4.8m
Lattice type	DBA
Emittance	8.4 nm
Beam lifetime	18.4 hours


Time structure

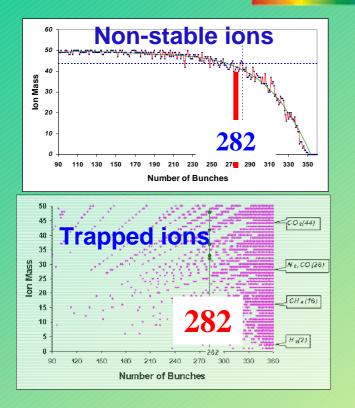
Storage Ring – Figure of Merit

High Brightness & Stable Beams

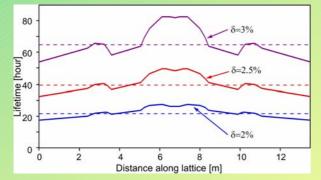
Radiation Characteristics



Dipole beamline


Dipole field B (T) Critical ph. energy (keV)	1.354 <mark>8.1</mark>	
Wiggler type I		
Magnetic field (T)	1.98	
Period length (cm)	17	
Critical ph. energy (keV)	11.97	
Undulator		
Magnetic field (T)	0.3	
Period Length (cm)	5	
Photon energy n=1,3,5 (keV) 0.8	35/ 2.6 /4.3	

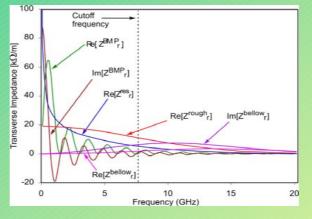
Storage Ring – Dynamics

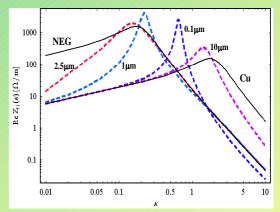


Ion Trapping & Beam Lifetime

Stable ion mass	Residual gas species
<u> </u>	2, H ₂
	16, CH ₄
17	
	28, N ₂ , CO
32	
33	
37	_
42	
	44, CO ₂
48	

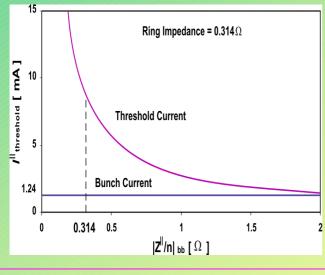
Touschek Lifetime –39.4 hours

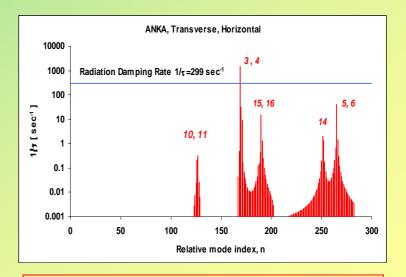



Coupling	1%
Gap Voltage	3.3 MV
Energy Accept.	2.4%
Vacuum	1 nTorr
Beam lifetime - 18.4 hours	

Ring impedance & Instabilities

Cutoff Im[Z^{bellow}z] 350 frequency [a 300 Longitudinal Impedance 250 Im[Zroughz] Im[Ztrans 200 Re[Zbellow_z] 150 Re[Zres Re[Z^{BMP} 100 50 0 Im[ZBMP -50 15 Frequency [GHz] 0 5 10 20 25 30

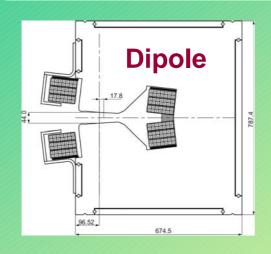



Longit. Imped. - 0.3 Ω Trans. Imp

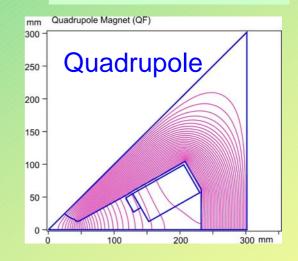
Trans. Imped. - 12.5 kΩ/m

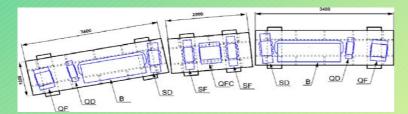
Undulator Imped.

Single bunch Instability

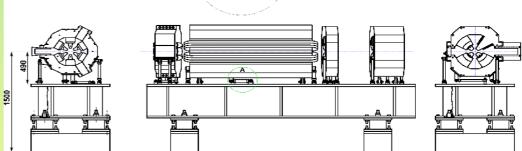

Multi-bunch Instability

M. Ivanian et al, Phys. Rev STAB-2004



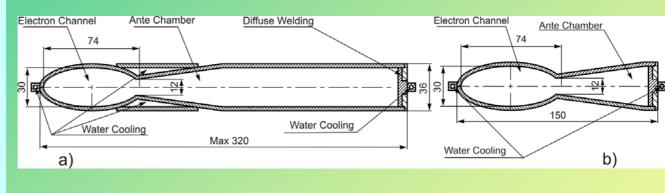

Storage Ring – Magnets

B=1.354 T, G=3.3T/m aperture=44mm

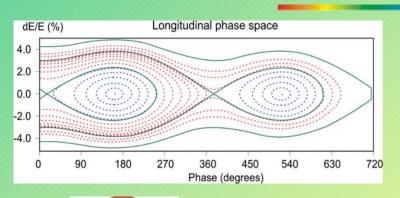


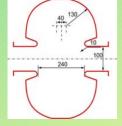
G=20 T/m aperture=50mm

Magnet supports


[**7**6

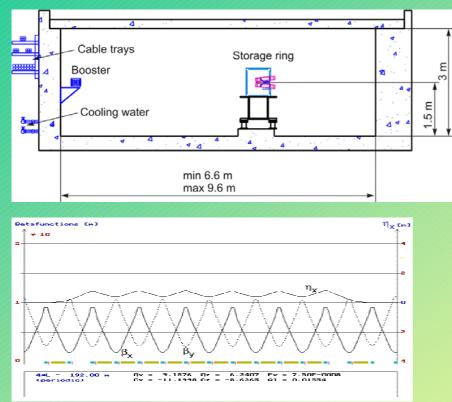
А




Storage ring – Vacuum system

Mater. – Stainless Steel Vacuum – 1 nTorr Fore-vacuum - 2 Turbo-molecular – 16 Titan-sublimation – 80 Ion pumps - 64

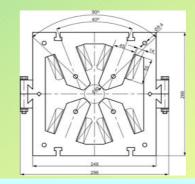
Storage Ring – RF



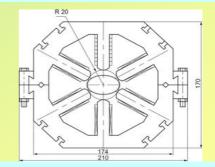
ELETTRA type cavity

Energy loss/turn	0.97 MeV	1.39 MeV
Shunt Impedance	6x3.4	4 MΏ
Total RF power	660 kW	830 kW
Gap Voltage	3.3 MV	3.3 MV
Energy acceptance	2.4%	2%
Energy Spread	0.1%	0.1%

Booster synchrotron

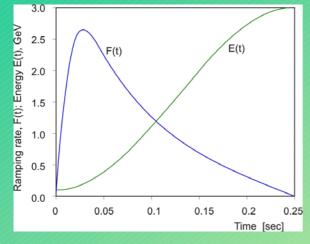


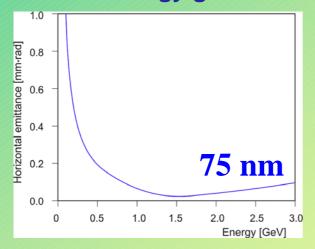
Lattice with missing dipole



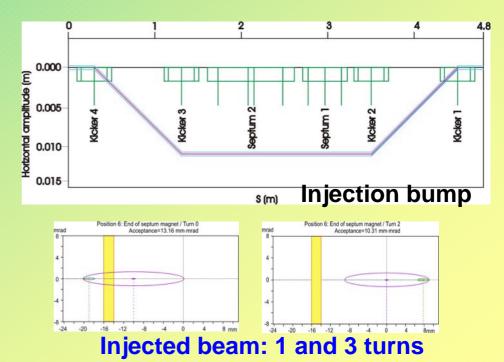
Dipole B=0.024 - 0.72T

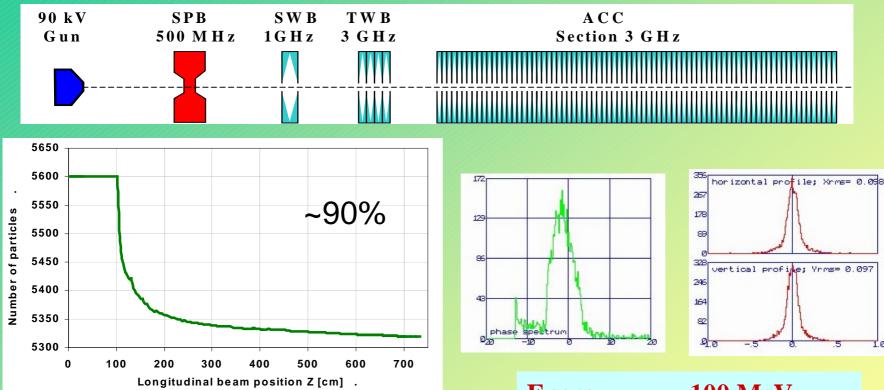
Energy	3 GeV
Pulse current	10 mA
Repetition	2Hz
Circumference	192 m
Emittance	75 nm-rad


Quadrupole G=10-13 T/m


Sextupole S=90/110 T/m2

Energy ramp and Injection

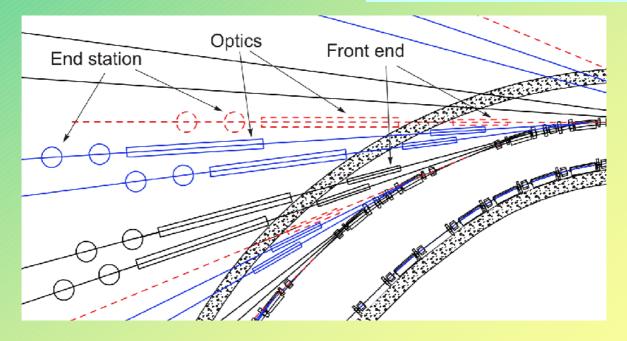

Dipole ramping rate and energy gain


Emittance vs energy

Dynamic aperture

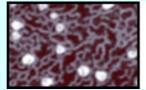
inac

Energy100 MeVCurrent1- 20 mAPulse length2-600 nsecFrequency3 GHzEnergy Spread< 1%</td>Emittance< 1 mm-mrad</td>

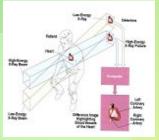

Beamlines

Dipoles – 32 Wigglers – 8 Undulators-4 Exp. Stations ~40

- 1. Diffraction&scattering (dipole)
- 2. XAS Beamline (dipole)
- 3. LIGA (dipole)
- 4. Imaging Beamline (wiggler)
- 5. SAXS Beamline (wiggler)
- 6. Soft X-ray microscopy and spectroscopy (undulator)


Structural Biology

Protein Structure Drug design


Physics

- Macro-molecular physics
- High-Temp superconductivity
- Physics of nano-particles
- Surface physics

Medicine

- Angiography
- Bronchography
- Mammography

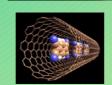
- Computed Tomography
- Photon Activ. Therapy
- Microbeam Rad. Therapy

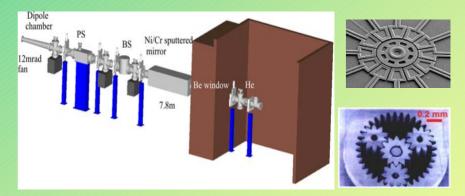
Chemistry

- Chemical Dynamics
- Polymers
- Nanoscale chemistry
- Biochemistry
- Catalytic Interfaces

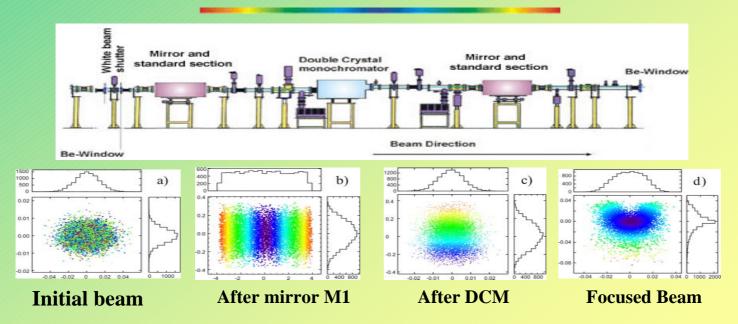

Material Science

3D structure of new material


Micro-fabrication


X-Ray Lithography - LIGA

Crystal growth New Crystals



Nano-structuresNano-tubes

Diffraction & Scattering Beamline

CANDLE Activity

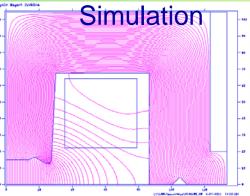
Review Panel

08 December 2001

01 February 2002

01 July 2002

"CANDLE is a <u>world-class</u> project enabling <u>frontier</u> research in a whole spectrum of basic and applied sciences.
<u>excellent investment</u> from scientific-technical point of view."


From Panel Report

First Magnet

From Design

To Fabrication

ArmElectroMash

- Total number of proposals 82
- Number of Scientists 284
- Number of Institutes
 - Countries 7 Armenia, England, Germany, Georgia, France, Russia, USA

- 41

Fields :

Physics, Biology, Medicine, Chemistry, Environment, Material science,

"From a review of the 69 experimental proposals , it is clear that strong Armenian user community will emerge as the facility is readied"

From Panel review

International Collaboration

Armenia, Germany, France, Italy, USA, Russia, Bulgaria, Greece, Georgia es Restances Surphraines DESV ESRE European Laboratories ESSY 105-56-6 URE European Round Table for SR and FEL Letter of Supports Memor. of Understanding International Atomic Energy **Collaboration Agreements** Agency

CANDLE Review

CANDLE is a place where investment might lead to a major improvement in S&T infrastructure in Armenia.

US Commission on S&T in Armenia, Nov 2004

"An Involvement of the Union in the Armenian CANDLE project would be a sign of encouragement to this project which concerned chiefly the European scientific teams " **European Union** Amendment 102, European Parliament, 26 Feb 2004

Sub Panel recommends to international and local organizations

• to include CANDLE in the priority list of projects conducted in Armenia

start the pre-construction stage

DESY Contribution

RF Components for 100 MeV Linac

Establishment of RF laboratory and RF Test Stand

University of Region de Provence

France

UNIVERSITE DE PROVENCE ATX-MARSEULF SECRETARIAT GENERAL - DIVISION DE LA RECHERCHE CONSEIL SCIENTIFIQUE Séance du 13 décembre 2002

IT DU REGISTRE DES DELIBERATIONS

LE) » en ARMENIE

Centre pour l'Avancement des Découvertes Naturelles en

se le projet : il rappelle que la lumière synchrotron permet de

entifiques, médicaux et technologiques. Le projet est porté par

utenu par l'UNESCO, et consiste à constraire à EREVAN, une

Etats unis soutiensent financièrement le projet. M. LE LAY, taltation d'un synchrotron san le edatore de l'Arbois, a pris

stivités territoriales et de la forte communauté arménienne de la

er Une aide sera écalement demandée à la Communaut versités est un soutien scientifique. Les liens entre l'Université tive du Président de l'Université, M. KAFTANDJIAN se sont tion avec l'université d'EREVAN en 1994.

mité son intérêt pour le projet CANDLE et lui apporte son

MEMORANDUM OF UNDERSTANDING

ablishment of the international collaboration between the Universities of Region Provence (France) and the Center for the Advancement of Natural Discoveries using Light Emission (Armenia)

the occasion of the visit of Prof. Jean Marc Layet, Prof. Guy Je Lay, Dr. Georges Terzien (renitd de Provence in Marcellie) and Prof. Parick Sodianian (Université de Paric-Pony) to CANDEL Ibeolonzy in Americani, 3-11 April 2006, discussions tateau facto daving teerings, the following memorandom of understanding is considered to be an important stage to stabilishere of isimutational cooperation on the creation and usage of the CANDE.

Intriling. CMRR 11 a social-class 1 GeV intermediate mergy 3rd generative prochemory maliditi The capable of providing the frontier means in such diverse fields of science and intermediates and the capable of providing the frontier means in such diverse fields of science and intermediates and array of the science and science and intermediates of the science of the science and the capable of the large involvement of scientific groups from all over the social. The creation of and science is the science and science and the creation of an array of the science and science and science and the creation of an array of the science and science and science and science and the creation of and science and science and science and science and science and the science and the science and science and science and science and science and the science and science and science and science and science and the science and scienc

An establishment of joint research groups on Laboratories and Universities level; Organization of joint seminan and workshops on synchrotron radiation usage; Development of the heumities instrumentation and end attachs for CANDU2; Development of the research programs to be conducted on CANDU2; Exchange of specialities and training of young scientifics.

The success of the collaboration, especially at the initial stage of the project, seenb a wide sometion among the scientific community with the sim to stabilith a composeding infrancture of the CARIC arisened use community according to world-case standards veloped in other similar laboratories in Targe and the USA. We are occiled with the collocks that CARICII opons for the broadhand scientific search and are confident that a strong user community will be developed for this new state-off-the art spectromon malation facility.

2/204

Support to the CANDLE project and express of interest in

Biotechnology

Nanotechnology

A natural byproduct of CANDLE

- Renewal of the scientific standards to its past world-class level
- Employment of young and mature scientists
- Reverse of the brain drain
- World standard education
- High technology development
- Regional and world-wide cooperation

Welcome to CANDLE

- International Laboratory
- User Friendly Environment
- World Class Research

I strongly support the CANDLE Project.

Just today the French Synchrotron SOLEIL has officially started to operate for the use of Scientific Discovery for which CANDLE would be a valuable tool. BRUNO ZOTTER, CERN, GENEVA, SWITZERLAND