Thundercloud-related radiation bursts observed at a coastal area and a mountaintop using segmented organic scintillators Yo KATO

The University of Tokyo

Co-authors

Yasuhiro KURODA The University of Tokyo
Nozomu TOMITA The University of Tokyo
Masato TAKITA ICRR, The University of Tokyo
Yoshizumi Inoue ICEPP, The University of Tokyo
Makoto MINOWA The University of Tokyo

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project

2. Long bursts from thunderclouds

- Electron acceleration in thunderclouds and RREA model

3. Observation at two locations

- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts
- 5. Observed bursts (Norikura) 12 bursts

6. Data analysis

- Thunder information, electric field, arrival direction and neutron component

7. Runaway electron source

- Estimation of energy and flux by Monte Carlo simulation

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project
- 2. Long bursts from thunderclouds
- Electron acceleration in thunderclouds and RREA model
- 3. Observation at two locations
- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts
- 5. Observed bursts (Norikura) 12 bursts
- 6. Data analysis
- Thunder information, electric field, arrival direction and neutron component
- 7. Runaway electron source
- Estimation of energy and flux by Monte Carlo simulation

Antineutrino detector for reactor monitoring

IAEA's proposal :

"Non-intrusive" inspection tool by antineutrino detection

- Neutrinos cannot be shielded
- There's no alternative source of antineutrino

-> Monitor flux and spectrum of reactor antineutrino

PANDA (Plastic Anti-Neutrino Detector Array)

- Plastic scintillator bars wrapped with Gd film
- 2 inch PMT attached on both ends
- $10\times10~$ segmented structure
- Measurement loaded on a 2-ton van

PANDA Project

Data acquisition system (PANDA64)

Calibration

- ⁶⁰Co source
- 3 slits on every modules (Left / Center / Right)
- -> Reconstruction of
 - energy deposit
 - position

width_left:4.59278, a_left:3.02529, b_left:11.4291 : width_right:4.40957, a_right:3.06285, b_right:8.10224 : d:0.695578 l:589.274 heights(source:L):5.52887, heights(source:C):5.63373, heights(source:R):5.52083

source-C pmt-R

source-L pmt-R

200

300

400

500

100

100

0

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project

2. Long bursts from thunderclouds

- Electron acceleration in thunderclouds and RREA model
- 3. Observation at two locations
- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts
- 5. Observed bursts (Norikura) 12 bursts
- 6. Data analysis
- Thunder information, electric field, arrival direction and neutron component
- 7. Runaway electron source
- Estimation of energy and flux by Monte Carlo simulation

Electron acceleration in thunderclouds

Radiation bursts related to thunder activity

Short bursts : below milliseconds

- known as <u>TGF</u>s (Terrestrial Gamma-ray Flash) from satellites
- also observed at the ground surface by natural lightning or rocket-triggered lightning
 - correlated to <u>lightning discharges</u>

Long bursts : a few seconds to more than 10 minutes

- known as <u>TGE</u>s or <u>gamma-ray glow</u>s
- frequently observed at <u>mountain areas</u>, occasionally at <u>coastal</u>

<u>areas</u>

- correlated to thunderclouds

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project
- 2. Long bursts from thunderclouds
- Electron acceleration in thunderclouds and RREA model

3. Observation at two locations

- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts
- 5. Observed bursts (Norikura) 12 bursts
- 6. Data analysis
- Thunder information, electric field, arrival direction and neutron component
- 7. Runaway electron source
- Estimation of energy and flux by Monte Carlo simulation

PANDA36 at coastal area (2011)

- 2nd prototype (36 modules)
- Ohi Power Station (coast of Sea of Japan, ~10 m above sea level)
- Nov 2011 to Jan 2012 (winter, 2 months)
- Measurement for reactor monitoring

PANDA64 at mountain area (2014)

- 3rd prototype (64 modules)
- Norikura Observatory (mountaintop, 2770 m above sea level)
- Jul 2014 to Sep 2014 (summer, 2 months)
- Measurement for burst observation

Observation 2011 & 2014

	Observation 2011	Observation 2014
Detector	PANDA36 (36 modules)	PANDA64 (64 modules)
Location	Ohi Power Station (sea level, 10m)	Norikura Observatory (high altitude, 2770m)
Season	2 months in winter	2 months in summer
Motivation	Reactor monitoring	Burst observation
Trigger	2 of inside 16 modules	1 of 64 modules

Detector monitoring

TEPA2015

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project
- 2. Long bursts from thunderclouds
- Electron acceleration in thunderclouds and RREA model
- 3. Observation at two locations
- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)

4. Observed bursts (Ohi) - 3 bursts

5. Observed bursts (Norikura) - 12 bursts

6. Data analysis

- Thunder information, electric field, arrival direction and neutron component

7. Runaway electron source

- Estimation of energy and flux by Monte Carlo simulation

Search for burst candidates (Ohi/10m)

- Count rate (> 4 MeV) of 10-second time blocks
- 5 σ excess for > 20 sec against average count rate

3 burst candidates were detected in 62 days

Search for burst candidates (Ohi/10m)

Energy spectrum (Ohi/10m)

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project
- 2. Long bursts from thunderclouds
- Electron acceleration in thunderclouds and RREA model
- 3. Observation at two locations
- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts

5. Observed bursts (Norikura) - 12 bursts

- 6. Data analysis
- Thunder information, electric field, arrival direction and neutron component
- 7. Runaway electron source
- Estimation of energy and flux by Monte Carlo simulation

Count rate of multiple energy ranges

Count rate enhancements were seen in > 10 MeV range

Search for burst candidates (Norikura/2770m)

- 3-100 MeV count rate of 30-second time blocks
- 5 σ excess for > 1 min against 2-hour reference count rate

Search for burst candidates (Norikura/2770m)

Aug 23 Au 01:10 01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30 02:40 Time(JST)

7 Oct 2015

TEPA2015

Time(JST)

Search for burst candidates (Norikura/2770m)

Burst	Duration	Energy	Peak rate [/sec]	Mean rate [/sec]	Total count $(\times 10^3)$
burst20140708-1	10.0 min	15 MeV	$\textbf{38.0} \pm \textbf{5.4}$	$\textbf{23.1} \pm \textbf{1.4}$	12.95 ± 0.77
burst20140718-1	4.0 min	10 MeV	43.9 ± 5.8	$\textbf{26.3} \pm \textbf{2.0}$	5.79 ± 0.45
burst20140719-1	14.5 min	10 MeV	$\textbf{35.3} \pm \textbf{5.6}$	15.8 ± 1.2	12.42 ± 0.96
burst20140731-1	3.0 min	15 MeV	113.4 ± 5.6	48.0 ± 2.3	$\textbf{7.94} \pm \textbf{0.39}$
burst20140822-1	9.0 min	15 MeV	$\textbf{31.0} \pm \textbf{5.4}$	$\textbf{22.1} \pm \textbf{1.4}$	11.10 ± 0.72
burst20140823-1	15.0 min	25 MeV	195.3 ± 6.3	$\textbf{62.2} \pm \textbf{1.2}$	51.65 ± 1.02
burst20140826-1	18.0 min	10 MeV	$\textbf{34.8} \pm \textbf{5.8}$	15.2 ± 1.2	14.54 ± 1.12
burst20140830-1	4.5 min	20 MeV	45.0 ± 5.5	33.7 ± 2.0	$\textbf{8.22}\pm\textbf{0.48}$
burst20140830-2	11.5 min	15 MeV	$\textbf{32.5} \pm \textbf{5.6}$	$\textbf{20.6} \pm \textbf{1.4}$	12.65 ± 0.83
burst20140905-1	5.0 min	15 MeV	58.9 ± 5.6	34.7 ± 1.9	9.49 ± 0.51
burst20140905-2	7.0 min	25 MeV	97.0 ± 5.9	64.8 ± 1.6	24.70 ± 0.62
burst20140905-3	3.0 min	15 MeV	68.2 ± 5.7	$\textbf{43.9} \pm \textbf{2.4}$	7.02 ± 0.38

Energy spectrum (Norikura/2770m)

Energy spectra extended up to ~30 MeV

Energy spectrum (Norikura/2770m)

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project
- 2. Long bursts from thunderclouds
- Electron acceleration in thunderclouds and RREA model
- 3. Observation at two locations
- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts
- 5. Observed bursts (Norikura) 12 bursts

6. Data analysis

- Thunder information, electric field, arrival direction and neutron component
- 7. Runaway electron source
- Estimation of energy and flux by Monte Carlo simulation

Thunder information

JLDN

(Franklin Japan co.)

- Lightning detection system
- Time and location of lightning

Thunder Nowcast

(Japan Meteorological Agency)

- Lightning detection system
- Meteorological radars
- Thunder activity in 4 levels
- 1 km grid
- every 10 minutes

Thunder information

Durct	Nowcast	JLDN	/
Burst	(20 min)	(20 min)	L
20140708-1	Level 3	105	2
20140718-1	Level 1	0	La la
20140719-1	Level 2	2	
20140731-1	Level 3	21	
20140822-1	Level 1	0	Ly I
20140823-1	Level 2	1	/
20140826-1	Level 2	0	~~
20140830-1	Level 3	2	~~~~ 1. ^
20140830-2	Level 1	0	T
20140905-1	Level 1	0	
20140905-2	Level 2	4	_
20140905-3	Level 2	4	L.

7 of 12 bursts : JLDN lightning and Nowcast level 2-3 5 of 12 bursts : Nowcast level 1-2

Electric field

Aug 23 01:10 01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30 02:40 Time(JST)

Electric field

Arrival direction of bursts

- PANDA's segmented structure
- E_{1st} distribution of bursts
 (BG periods subtracted)
- -> From <u>upward</u> direction

Arrival direction of bursts (PANDA36)

Arrival direction of bursts (PANDA36)

0.06

0.05

0.04

0.03

0.02

-0.01

0.06

0.05

0.04

0.03

0.02

0

-0.01

Neutron component in bursts

- Delayed coincidence method (similar to anti-electron neutrino)
- Prompt event : Proton recoil by collision
- Delayed event : Neutron capture by gadolinium nuclei
- Accidental event rate subtracted

	correlated	accidental
prompt event	$1.5 \mathrm{MeV} \le R$	$E_{\rm total} \le 10.0 {\rm MeV}$
delayed event	$1.5 \mathrm{MeV} \le R$	$E_{\rm total} \le 10.0 {\rm MeV}$
time window	$8\mu \text{sec} - 150\mu \text{sec}$	$1008\mu sec - 1150\mu sec$

Neutron component in bursts

Neutron signal enhancement was detected by delayed coincidence method (Ohi/10m)

<u>Outline</u>

1. Detector

- Antineutrino detector for reactor monitoring and PANDA project
- 2. Long bursts from thunderclouds
- Electron acceleration in thunderclouds and RREA model
- 3. Observation at two locations
- Ohi Power Station (coastal area) and Norikura Observatory (mountain area)
- 4. Observed bursts (Ohi) 3 bursts
- 5. Observed bursts (Norikura) 12 bursts
- 6. Data analysis
- Thunder information, electric field, arrival direction and neutron component

7. Runaway electron source

- Estimation of energy and flux by Monte Carlo simulation

Estimation of electron source

Estimate <u>height</u> and <u>energy</u> of electron source using energy spectrum.

- 1: Simulation of Electron propagation in atmosphere
- 2: Simulation of Detector response

Simulation of Electron propagation in atmosphere

- <u>Monochromatic</u> electron assumed
- Vertically downward to the ground
- Height: 100 2000m (20 heights)
- Energy: 10 100MeV (19 energies)
- Total 380 combinations
- Obtain e^- and γ at the ground

Simulation of Detector response

- Obtained e^- and γ at the ground
- Shot to PANDA64 through Al ceiling
- Angular distribution considered
- Total 380 combinations
- Obtain simulated energy spectra
- Spectra fitted to measurement data

Fitting of energy spectrum

Best fit electron source

Burst	Height	Energy
	լայ	[wev]
20140708-1	1100	65
20140718-1	400	50
20140719-1	300	55
20140731-1	300	35
20140822-1	900	55
20140823-1	500	40
20140826-1	1600	95
20140830-1	500	80
20140830-2	700	65
20140905-1	1700	50
20140905-2	300	65
20140905-3	500	40
20111225(Ohi)	1100	16
20120102(Ohi)	1100	16
20120105(Ohi)	400	16

Estimation of source electron flux

<u>Summary</u>

Observation by two PANDA prototypes at two locations

- 3 bursts detected at Ohi Power Station (coast, 10 m)
- 12 bursts detected at Norikura Observatory (mountain, 2770 m)

Data analysis by various approaches

- Correlation with thunder information (JLDN and Thunder Nowcast)
- Correlation with electric field
- Arrival direction analyzed taking advantage of segmented structure
- Neutron enhancement detected using delayed coincidence method

Estimation of electron source in thunderclouds

- Electron source (height and energy) estimated by simulation
- Difference of energy and flux of electron source between two locations