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Preface

The present monograph as well as the next one (Dorman, M2005) is a result of more
than 50 years working in cosmic ray (CR) research. After graduation in December 1950
Moscow Lomonosov State University (Nuclear and Elementary Particle Physics
Division, the Team of Theoretical Physics), my supervisor Professor D.I. Blokhintsev
planned for me, as a winner of a Red Diploma, to continue my education as an aspirant
(a graduate student) to prepare for Ph.D. in his very secret Object in the framework of
what was in those time called the Atomic Problem. To my regret the KGB withheld
permission, and I, together with other Jewish students who had graduated Nuclear
Divisions of Moscow and Leningrad Universities and Institutes, were faced with a real
prospect of being without any work. It was our good fortune that at that time there was
being brought into being the new Cosmic Ray Project (what at that time was also very
secret, but not as secret as the Atomic Problem), and after some time we were directed to
work on this Project. It was organized and headed by Prof. S.N. Vernov (President of
All-Union Section of Cosmic Rays) and Prof. N.V. Pushkov (Director of IZMIRAN);
Prof. E.L. Feinberg headed the theoretical part of the Project. Within the framework of
this Project there was organized in former Soviet Union in 1951-1952 a wide network of
CR stations equipped with a Compton type of large ASC-1 and ASC-2 ionization
chambers developed in USSR (see Sections 1.2.7 and 4.2).

At that time many experimental results on CR time variations were obtained, but
they were very considerably affected by meteorological effects and by meson-nuclear
cascade in the atmosphere. Therefore it was not possible to make reasonable
transformation from observed CR time variations in the atmosphere and underground to
the variations expected in space. To solve this problem, it became necessary to develop a
full theory of cosmic ray meteorological effects and a special method of coupling
functions between primary and secondary CR variations (this work was finished at the
end of 1951 and was described in the IZMIRAN’s Instructions on CR Data Processing,
see References to Chapter 1: Dorman, 1951a,b). Only from 1954 it becomes possible for
our work on CR variations to appear in the open scientific literature, and from 1955 — to
take part (by presentation of papers) in International Cosmic Ray Conferences. Mainly
our results of that time were described in my first book (Dorman, M1957, which was
translated very soon into English in the USA, thanks to the help of Professor John
Simpson, President of International CR Commission). Soon after this under the auspices
of the International CR Commission the Committee of CR Meteorological Effects was
organized, and I became its Chairman. Under the auspices of this Committee a special
Instruction for CR Data Processing was developed which took into account
meteorological effects.

In 1957 I was invited to work on special problems in Magnetic Laboratory of the
Academy of Sciences of USSR as a Head of Department (in 1962 this Laboratory was
taken into the I.V. Kurchatov Institute of Atomic Energy). In parallel I also worked at
Moscow State University as Professor in the CR and Space Research Team (I also gave
lectures in Irkutsk, Alma-Ata, Nalchik, Tbilisi, Erevan, Samarkand, and others places;
over about 40 years of teaching under my supervision more than hundred graduate
students and scientists who became experts in CR research in many countries gained
their Ph.D.). As my hobby I continued to work in CR research, and as Vice-President of
All-Union Section of Cosmic Rays and Radiation Belts, took an active part in preparing
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the Soviet net of CR stations to the IGY (International Geophysical Year, 1957-1958):
we equipped all soviet stations in USSR and in Antarctica with standard cubic and semi-
cubic muon telescopes and with neutron monitors of IGY (or Simpson’s) type. In 1957
regular CR measurements in troposphere and stratosphere by radio-balloons at several
sites of USSR and in Antarctica, were organized by Professors S.N. Vernov and A.N.
Charakhchyan as well as several latitude surveys on ships along the route Leningrad —
Antarctica — Leningrad (see Sections 2.13 and 4.6). In connection with preparing for the
IQSY (the International Quiet Sun Year, 1964-1965), the soviet net of CR stations was
extended about two fold and they were equipped with neutron super-monitors of IQSY
type (with an effective surface about 10 times bigger than the previous monitor of IGY
type).

In 1965 I returned to IZMIRAN, and founded the Cosmic Ray Department (thanks to
help of Professor N.V. Pushkov and Academicians M.D. Millionshchikov, L.A.
Artsimovich, and V.I. Veksler). For the next 30 years, I was a Head of this Department,
which became the center in the Soviet Union of scientific CR research in geophysical
and astrophysical aspects. Our Department supported the work of all Soviet CR stations
in the USSR and undertook the entire work of Soviet CR stations in Antarctica. We
organized many CR expeditions inside USSR and in the Arctic Ocean, as well as in
Pacific, Atlantic, Indian, and Southern Oceans on the ships “Academician Kurchatov”,
“Kislovodsk” and others (expeditions were equipped with a neutron super-monitor of
IQSY type, with a multi-directional muon telescope, with radio-balloon CR
measurements in the troposphere and stratosphere). Much very important data were
obtained about coupling functions, integral multiplicities, and on the planetary
distribution of cut-off rigidities.

At the end of the 1960s, in cooperation with V. Yanke, the theory of CR
meteorological effects was generalized to take into account the spectrum and angular
distribution of muons at the decay of charged pions, and Coulomb scattering of muons
during their propagation in the atmosphere (see review in Dorman, M1972). We
proposed and developed the spectrographic method of separation of observed CR
variations (corrected on meteorological effects) in variations of geomagnetic and extra-
terrestrial origin (see Chapter 3). It became possible based on CR data determine the
change of cut-off rigidity and from this the structure of magnetospheric currents and
their time variation during large geomagnetic storms (these results will be reviewed in
detail in Dorman, M2005). Simultaneously it became possible, based on CR data, to
investigate in detail the variation of the CR spectrum in space outside the Earth’s
magnetosphere. This method was then generalized and developed in two directions. The
first - by also considering CR meteorological effects as being unknown (the so called
generalized spectrographic method), allowed, based only on CR data, to determine
simultaneously and separately of each class of CR variations: atmospheric, geomagnetic,
and extra-terrestrial. The second, by taking into account CR anisotropy (the so called
global spectrographic method), allowed, based only on the CR data of many CR stations
(about 40-50) corrected for meteorological effects, to determine simultaneously of the
change of cut-off rigidities on our planet and the CR distribution function in space.
These methods we consider in details in Chapter 3, and their applications to CR data will
be considered in the next book (Dorman, M2005).

From 1955 I took part in all International Cosmic Ray Conferences by presenting of
original papers, as well as Invited Papers (in 1959 and 1965), Rapporteur Papers (in
1969 and 1987), Highlight Paper (in 1999), but I was able to go abroad only in 1966-
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1969 (thanks to N.V. Pushkov and M.D. Millionshchikov) and then from 1988, after
“perestroika”. The first country I traveled to was Bulgaria (the International School on
Space Physics, 1966), then Yugoslavia (the International Symposium on Solar-
Terrestrial Relations). In 1967-1968 1 headed the CR expedition to South America on the
ship “Kislovodsk”, went to Czechoslovakia in 1968, and to the International CR
Conference in Budapest in 1969. After ‘perestroika’, thanks to invitations, from K.
Nagashima I went to Japan, from C.J. Cesarsky to France, from A.W. Wolfendale and
J.J. Quenby to England, from K. Otaola and J.F. Valdes-Galicia to Mexico, from D.
Venkatesan to Canada, from J.A. Simpson and H. Ahluwalia to the USA, from W.L
Axford and H.J. Volk to Germany, from A. Bishara to Egypt, from L.O’C. Drury to
Ireland, from N. Iucci, G. Villoresi, and M. Parisi to Italy, from P.J. Tanskanen to
Finland, from M. Duldig to Australia.

In 1991 I was invited by the Israeli Minister of Science, Professor Yuval Ne’eman,
to visit Israel (the Institute of Advance Study at Tel Aviv University) to give lectures and
organize a Cosmic Ray Research Center. Step by step, thanks to great help of Prof.
Yuval Ne’eman, Dr. Abraham Sternlieb, Mr. Abi Har-Even, and of three Italian
colleagues, N. Iucci, G. Villoresi, and M. Parisi, there was founded the Israel Cosmic
Ray Center with National Space Weather Center and Israel-Italian Emilio Segre’
Observatory on Mt. Hermon (2200 m, cut-off rigidity 10.8 GV; see description in
Section 4.8), and I became a Head of this Center and Observatory (to this day I continue
also to work as a volunteer at IZMIRAN as Chief Scientist of the Cosmic Ray
Department, which has been headed since 1995 by Dr. V.G. Yanke).

About two years ago [ was invited by Dr. Harry Blom to prepare monographs on
geophysical and space aspects of CR research and possible applications of them. As a
result of our discussions it was decided to prepare two books: Cosmic Rays in the
Earth’s Atmosphere and Underground, and Cosmic Rays in the Magnetosphere and in
Space. The first book is now ready, and the second will be in about a year’s time, in
2004. The present book consists of four Parts, and each Part of four or five Chapters. To
each Part we have given a short Preface, explaining the main aims of the Part and of the
Chapters in it. Here we will give only very short survey of the book’s structure (it is
described in detail in the Contents).

In Part 1 (Chapters 1-4) we consider CR as an object of research and as a research
tool. The main notions and the nature on CR, a short historical survey of the discovery of
CR and the development of research, and the main properties of primary CR we consider
in Chapter 1; in Chapter 2 the properties of secondary CR; in Chapter 3 how, from
ground CR observations, to obtain information about the situation in the magnetosphere
and in space; and in Chapter 4 the experimental basis of CR research. So, in Chapters 1
and 2 we consider CR mainly as a subject of research, and in Chapters 3 and 4 mainly as
a research tool.

Part 2 (Chapters 5-9) is devoted to the problem of the influence of changes in the
atmosphere on the intensity of primary and different secondary components of CR in
atmosphere and underground, so called meteorological effects of CR: barometric
(containing negative absorption and decay effects, and the positive generation effect);
temperature and humidity (contains positive pion and negative muon effects); snow,
wind, gravitational, and atmospheric electric field effects. In Chapter 5 we consider the
full theory of CR meteorological effects in the one-dimensional approximation; in
Chapter 6 data on CR snow, wind, and barometric effects, in Chapter 7 data on CR
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temperature and humidity effects; in Chapter 8 — data and detail theory of CR
atmospheric electric field effects on muon and neutron components, and in different
multiplicities; and in Chapter 9 the development of the full theory of CR meteorological
effects with account experimental data described in Chapters 6—8 and results of their
comparison with theory in the one-dimensional approximation (Chapter 5).

In the Part 3 (Chapters 10—14) we consider the inverse problem, that of how CR
influences the atmosphere and atmosphere processes: through nuclear reactions of
primary and secondary CR with air and aerosol matter accompanied by the formation of
many unstable and stable cosmogenic nuclides (Chapter 10); through the generation in
the atmosphere of secondary relativistic electrons and EAS (Extensive Atmospheric
Showers) playing a crucial role in atmospheric electric field phenomena (Chapter 11);
through air ionization influences on the low ionosphere and radio wave propagation
(Chapter 12); through induced chemical reactions, influences on the chemistry of the
atmosphere and the ozone layer (Chapter 13) as well as on the formation of clouds and
influence on long-term global climate change (Chapter 14).

In the last Part 4 (Chapters 15-18) we consider realized and potential applications
of CR research for many different branches of Science and Technology. Chapters 1517
described the applications in detail: the solution of the inverse problem of determining
from CR data the vertical distribution of air temperature, applications to CR latitude data
processing, and applications of the radiocarbon method, respectively. In Chapter 18 we
consider many possible applications of CR research in different branches of Science
(Meteorology, Geology, Atmospheric Electricity, Hydrology, Archaeology, Ecology,
Physics of Magnetosphere, Physics of Heliosphere, CR interactions with the
atmospheres of the Sun and other planets and their satellites, with the Moon, asteroids,
and meteorites) and Technology (the Meteorological Service of Large Airports, for
Geophysical Prospecting, in Agriculture, the Security Service, Environment Monitoring
of Radioactive Clouds, for Space Weather Monitoring and Forecasting by using on-line
data from many CR Observatories, for Large Earthquake Forecasting by using on-line
data on thermal neutrons and participating energetic particles from radiation belts, using
CR research for Medical problems and the problem of road accidents). Many of these
applications we consider in detail, and others — very briefly, we only formulate the
principal meaning of any application (some of them need additional checking and
development, and some, concerned with problems of CR in Magnetosphere and in
Space, will be considered in detail in Dorman, M2005).

At the end of book, in the Conclusion we consider some unsolved problems and
prospect for the development of CR research in the atmosphere and underground. In the
References there are separately references for Monographs and Books as well as for
each Chapter. For the convenience of the reader, at the end of book we also put a
Subject Index and an Author Index.

We shall be grateful for any comments, suggestions, preprints and reprints which
can be useful in our future research, and can make the next Edition of the book better
and clearer; they may be sent directly to me by e-mail (lid@physics.technion.ac.il,
lid1 @post.tau.ac.il), by fax [+972] 4 696 4952, and by surface or air-mail to the address:
Prof. Lev I. Dorman, Head of ICRC and ESO, P.O. Box 2217, QAZRIN 12900, Israel.

Lev I. Dorman
27 June, 2003 — 27 January 2004, Qazrin; Moscow; Princeton
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FREQUENTLY USED ABBREVIATIONS AND NOTATIONS

AEF — Atmospheric Electric Field

ASC-1 and ASC-2 — Ionization Chambers, developed in USSR, volume 950 and 50 /
BMA — Brazilian Magnetic Anomaly

CR — cosmic rays

CRA — cosmic ray activity indices

E — intensity of AEF (in kV/m)

E — energy of CR particles

E, — energy of primary CR particle

EAS — External Atmospheric Showers of CR

EFS-1000 — Electric Field Sensor

e(h) — vertical air humidity distribution

EPE — electron precipitation event

ESA — European Space Agency

ESO — Israel-Italian Emilio Segre’ Observatory (Mt. Hermon, Israel)
FEP — Flare Energetic Particles

FIP — First Ionization Potential

g — gravitational acceleration (in cm/sec’ )

GCR — galactic cosmic rays

GLE — Ground Level Enhancement of solar CR increasing
H — altitude

h— atmospheric pressure

h, — pressure on the level of observations

IC — ionization chamber, shielded by 10 cm Pb

ICRC — International Cosmic Ray Conference

ICRC — Israel Cosmic Ray Center (from 1992)

ICR-SWC — Israel Cosmic Ray — Space Weather Center (from 2003)

ICRS — International Cosmic Ray Service (proposed in 1991)

IGY — International Geophysical Year (July 1957-December 1958)

IMF — interplanetary magnetic field

IQSY — International Quiet Sun Year (1964-1965)

ISS — International Space Station

L — transport path for primary CR absorption

[ — transport path for absorption of pions

LDB — Long Duration Balloon

m=1,2,3, ... — neutron multiplicities: number of pulses in NM from one neutron,
proton, pion or muon in dependence of their energy during the time-gate (~ 10° sec)

m w.e. — meters of water equivalent

mi(R, h) — integral multiplicity: number of secondary CR particles of type i on level 4
from one primary CR particle with rigidity R on the top of atmosphere

My , m, — rest mass of pions, muons

MT — muon or meson telescope
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N(R, h) or I(R;, h) — CR intensity

NM — neutron monitor or super-monitor

NM-64 or NM-IQSY — neutron super-monitor of IQSY type
NM-IGY — neutron monitor of IGY or Simpson’s type
R = pc/Ze — particle rigidity

R — geomagnetic cutoff rigidity

R(h) — gas constant of air

R, — gas constant of dry air at normal conditions

SA — solar activity

SCR — solar cosmic rays

SDE — strong destructive earthquakes

SEP — solar energetic particles

SNE — solar neutron events

SNT — solar neutron telescope

SSM — Standard Solar Model

SW — Space Weather

T(h) — vertical air temperature distribution

W(R, h) — coupling function

Wg;(h,h,) — total atmospheric electric field coefficient
W,;(h,h, ) — total humidity coefficient

Wi (h, ) — total gravitational coefficient
Whi(hy) or B(h,) — total barometric coefficient

(
Wri(h,hy)= W# (h, h,)+ W; (h,h, ) — total temperature coefficient

W;f (h,h, ) — pion’s part of total temperature coefficient
1

Y(R.h,) or Y(E,h,) — yield function (characterized the dependence of CR detector

counting rate per one primary proton from particle rigidity or energy)
Z or 8 — zenith angle
A — latitude
¢ — longitude

ﬂ'+,7t_,ﬂo — positive, negative and neutral pions

1t , i~ —positive and negative muons

Tg, Ty — life-time of rest pions and muons

Qgi(R,h,h,) — partial atmospheric electric field coefficient
Q,i(R,h,h,) — partial humidity coefficient

Qgj (R, h,) — partial gravitational coefficient

Qi (R, h,) — partial barometric coefficient

Q7 (R, h,h, ) — partial temperature coefficient
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AND
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2 Lev Dorman Cosmic Rays in the Earth’s Atmosphere and Underground

Preface of Part 1

Part 1 contains four Chapters. In Chapter 1 we consider the main information about
CR as a universal phenomenon in the Universe, the development of CR research starting
from its discovery at the beginning of the 20th Century, the main aspects of CR research
and their inter-relations. In this chapter we also consider the main properties of primary
CR (energy spectrum, chemical and isotopic composition, the main properties of protons
and o—particles, electrons, positrons, antiprotons in primary CR, as well as the search for
anti-helium). The main properties of secondary CR generated and propagated in the
atmosphere and underground we consider in Chapter 2. In both Chapters 1 and 2 CR are
considered mainly as an object of research, but in many cases CR are considered as an
effective instrument of research. Namely, CR for a long time had been widely used as a
natural source of high energy particles for discovering new particles (positrons, muons,
pions, kaons, hyperons, and others) as well as for investigations of nuclear interactions
and the formation of meson—nuclear and electromagnetic cascades at high energies (see
Section 1.2 in Chapter 1, and in more detail in I.V. Dorman, M1981, M1989). Up to now
CR continue to be used in this way: the CR particle energies still several orders higher
than can be obtained on accelerators. The first time estimation of space magnetic fields
was made by CR: in the interstellar space (Fermi, 1949), and in the interplanetary space
(Dorman, 1955; Dorman and Feinberg, 1955; Dorman, 1957, 1957M). Namely, before
direct measurements of magnetic fields in the interplanetary space, it was determined by
CR that this field has a significant part as a disordered, turbulent field and roughly
estimated the spectrum of turbulence (Dorman, 1959b). Let us note that CR are also used
widely as a research instrument also for discovering and investigating such an important
phenomenon as particle acceleration by shock waves, for research of modes of particle
propagation and acceleration in magnetized space plasma, for discovering and
investigation of convection—diffusion and drift mechanisms of CR modulation in the
Heliosphere. As will be considered in detail in Dorman (M2005), by investigation of the
CR - solar activity hysteresis phenomenon, it was determined 35 years ago for the first
time that the dimension of the Heliosphere is about 100 AU (Dorman and Dorman,
1967a,b).

For effective use of CR as a research instrument for many phenomena in the
atmosphere and underground, in the magnetosphere, and in space, there were developed
special methods of integral multiplicity and coupling functions, the spectrographic
method, the method of variational coefficients and global—spectrographic method
(acceptance vectors and spherical analyses). These methods described in Chapter 3
allow us to transform CR data observations in atmosphere and underground to the top of
the atmosphere, and then to space (outside the magnetosphere), and to determine the
energy—space distribution function of CR and its time variations caused by many
different phenomena on the Sun, in the Heliosphere, in the Galaxy. So the worldwide
network of CR continue observations underground and in the atmosphere can be
considered as giant multi-directional and energy multi-channel space CR detector rotated
and moved with the Earth.

The experimental basis of this planetary detector (worldwide networks of ionization
chambers, muon ground and underground telescopes, neutron monitors and neutron
telescopes, arrays of EAS) as well as experimental methods of CR direct investigations
on balloons, satellites and space—probes we consider in Chapter 4.



Chapter 1

Cosmic Rays as an Object of Research

1.1. CR as an universal phenomenon in the Universe

1.1.1. What are CR? Internal and external CR; multiple origin of CR

It is natural to define cosmic rays (CR) as particles and photons with energies at least
several orders of magnitude higher than the average energy of thermal particles of
background plasma. There is internal CR, generated inside the background plasma of
object considered, and external CR generated in other objects and propagated to the
object considered. We are now aware of CR of different origin:

Extragalactic CR of very high energy (up to 102l ev ), are generated in radio-

galaxies, quasars, and other powerful objects in the Universe, and come through
intergalactic space to our Galaxy, to the Heliosphere, and into the Earth’s atmosphere.
Therefore, they are external CR relative to our Galaxy.

Galactic CR, with energy at least up to 10" —10'° eV, are generated mainly in

supernova explosions and supernova remnants, in magnetospheres of pulsars and double
stars, by shock waves in interstellar space and other possible objects in the Galaxy.
These CR are internal relative to our Galaxy and external to our Heliosphere and the
Earth’s magnetosphere.

Solar CR, with energy up to 15-30 GeV, generated in the solar corona in periods
of powerful solar flares, are internal CR for the Sun’s corona and external for
interplanetary space and the Earth’s magnetosphere.

Interplanetary CR, with energy up to 10—100 MeV, are generated by a terminal
shock wave at the boundary of the Heliosphere and by powerful interplanetary shock
waves. They are internal to our Heliosphere and external to the Earth’s magnetosphere.

Magnetospheric (or planetary) CR, with energy up to 10 MeV for Jupiter and
Saturn, and up to 30 keV for the Earth, are generated inside the magnetospheres of
rotating magnetic planets.

1.1.2. Two maxima in particle energy distribution in magnetized space

plasma

Now, we know very well from observations of CR, radio-waves, X-rays, and
gamma-rays that practically any astrophysical object with a magnetized dynamic space
plasma generates and contains CR. Why? What is the main cause of this universal
phenomenon in the Universe?

Let us consider the particle energy distribution in any magnetized dynamic space
plasma. We can see that there are always two maxima in this distribution, with a great
difference in average energies (many orders of magnitude). Examples are numerous: the
magnetospheres of the Earth and other rotating planets with magnetic fields,
interplanetary space and the Heliosphere with outgoing solar wind with frozen-in
magnetic fields and a lot of moving disturbances, solar and stellar hot coronas of rotating
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stars with magnetic field, inter-stellar and inter-galactic space with background plasma
and frozen-in magnetic fields, supernova explosions and supernova remnants from
massive magnetic rotating stars, very fast rotating pulsars with giant magnetic fields and
many other objects in the Galaxy, galaxies of different types, quasars, clusters and super-
clusters of galaxies, and so on; both in the modern stage of the Universe’s evolution and
in the earlier stages. The first maximum is usual; it corresponds to the well known
thermal Maxwell function

Dy (Ey )< Ex exp(- Ey JkT), (1.1.1)

where Ej is the kinetic energy of electrons or ions of background plasma with
temperature 7 (and with average energy (Ek> M =(3/2)kT =1+100 eV in different

astrophysical objects). The second maximum corresponds to CR of different origin,
containing much smaller numbers of particles, but with much higher energy (a factor of

10° —10° higher than (Ek) M of the background plasma), and is characterized in a

broad energetic interval by the quasi-power spectrum:
DCR(EI()"‘E]:},(EI‘), (1.12)

where the power index is function on Ej : at some energy Exmax> Y(Egmax)=0 and
Dcr(Ey) reaches its maximum value; for Ej < Ef max s 7(Ek)< 0, and Dcg(Ey)
increases with increasing Ej; for Ex > Exmax> Y(Ex)>0 and Dcg(Ej) decreases

with increasing Ej. Let us note that for galactic CR the average energy

-3

(Ek>GCRz1010eV and density NGCRzlo_mcm , so that the energy density

(E 2 > GcrNGCR s about the same order as the energy density of interstellar matter with

(Ek ) y =1eV, Ny =1 em™ and interstellar magnetic field with H = 3x10°0e :

<Ek>GCRNGCR = (Ek>MN] = H[z/gﬂ' zleV.cm_3 . (1.1.3)

1.1.3. The main cause of the CR phenomenon

What is the main cause of the second maximum in the particle energy distribution? It
is very easy to see that in any magnetized dynamic space plasma there is a macroscopic
motion of magnetic disturbances and magnetic clouds, shock waves and other types of
magneto-hydrodynamics waves, which interact through the magnetic field with charged
particles. The effective temperature of the macroscopic motion is extremely high: for
example, a magnetic cloud (or the shock wave connected with this cloud) in the

interplanetary space with velocity wu =500km/s= 5x107 cm/s  with dimension

L=0.1AU=15x10"%cm and density p=5 cm™ (near the Earth’s orbit) has kinetic
energy
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W,=Lpu?/2=108erg~10* eV ; (1.1.4)

magnetic clouds in the interstellar space with dimension L =1pc= 3x10"® cm , chaotic

velocities u ~10km/s =10® cm/s and density p =1 em™ have kinetic energy

W, =Lpu®/2~10Perg =105 eV (1.1.5)

This means that charged particles that interact with these magnetic clouds can increase
their energy in thermodynamic equilibrium up to giant energies, much higher than really
observed.

1.1.4. Formation of CR spectrum and upper energy limit

In practice the thermodynamic equilibrium between macroscopic magnetized plasma
motion and CR charged particles can not be reached, since the energy increase is hardly
limited and the formation of energy spectrum is determined by the following three
important factors (Dorman, 1979a,b; in more details see Dorman, M2005):

1. The rate of energy increase during the acceleration process (as determined by the
details of the acceleration mechanism, e.g. according to Fermi, 1949).

2. The energy loss of accelerating particles by ionization and nuclear interactions
(important for small and middle energy), on interactions with magnetic field
(synchrotron radiation; important for electrons), interactions with photons (especially

with relict photons at 2.7°K, important for very high energy particles with
E>10-10% ev).

3. Particle escape from the acceleration region: for the energy interval in which the
escape probability is proportional to the time of a particle’s acceleration and does not
depend on the energy of particles Ej, the power index ¥ in Eq. 1.1.2 is constant (for

galactic CR, the range is 1019 -10' eV); when the probability of escape starts to
increase with increasing particle energy, the power index ¥ starts to increase with

increasing Ej . This gives a gradual upper cut off for the energy spectrum: for galactic
CR generated in supernova remnants it is expected to be about 10'4-10" eV and for

CR generated in magnetospheres of pulsars is expected about 102 eV ; for solar CR
generated in solar flare events it was observed from 100 MeV up to about 20-30 GeV (in
different cases) and for stellar CR generated in much greater stellar flare events upper
energy limit expected to be several order higher. For interplanetary CR generated by
terminal shock wave and interplanetary shock waves the observations give a cut off
energy of about 10-100 MeV, for planetary CR generated in planetary magnetospheres
direct measurements gave for upper energy limit from 30-50 keV for the Earth up to
10-20 MeV for Jupiter and Saturn.
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1.2. Main steps of CR discovery and research development

Detailed description of the history of the discovery of CR and development of many
aspects of CR research up to the middle of the 20th century was given in the monographs
of Irena Dorman (M1981, M1989), and is reflected in a collection of original papers
edited by Sekido and Elliot (M1985). Here we will give a very short description of the
main milestones of the discovery of CR and the development of CR research in many
aspects.

1.2.1. Air conductivity and CR discovery (1900-1912)

Geophysical investigations of air conductivity, which was started by Coulomb (1785)
and continued up to the beginning of 20th century by Elster and Geitel (1900), Wilson
(1900, 1901) and others, led to the discovery of some additional to the radioactive
emanations some unknown source of air ionization. Detailed research of this unknown
source led finally to the discovery of CR. After seven flights on balloons by Victor Hess
in 1911-1912, and especially after the famous seventh flight to the height 5350 m on 7th
August, 1912 (Hess, 1912), it was shown that the intensity of this source does not
decrease with increasing altitude (as was expected if the source is radioactive emanation
from the ground, as was assumed by many scientists before), but increases by several
times on height about 5 km. Kolhorster (1913) continued balloon measurements and
showed that at the height of about 9 km the intensity of air ionization reaches 80

3sec™!, about 40 times higher than the ionization near sea level (only

3

ion.cm

~2jon.cm.sec”'; this value is in good agreement with modern measurements of

Kyker and Liboff (1978) by a 900-liter ionization chamber, who obtained the value

2.1540.05 ion.cm.sec”! ). The radiation discovered was called ‘penetrating radiation’
or ‘ultra-gamma radiation’ by V. Hess. For this discovery Victor Hess received the
Nobel Prize in 1936.

1.2.2. Investigations of the origin of ‘penetrating radiation’;
establishment of extra-terrestrial origin of CR (1913—-1926)

Many years after V. Hess seminal observations in 1912 scientists discussed the
problem of the origin of ‘penetrating radiation’: Is it of terrestrial or extra-terrestrial
origin? That is, is it from radioactive emanations in the atmosphere or it is coming from
the space? Only in the middle of the 1920s was the problem of the origin of this
previously unknown radiation solved: the answer to this fundamental problem was
obtained on the basis of many experiments. It was shown finally that this radiation is not
produced by radioactive emanations in the atmosphere but comes from space and,
according to suggestion of Millikan and Cameron (1926), this radiation was named
cosmic rays (CR).

1.2.3. Investigations of the nature of CR: charged particles or gamma
rays (1927-1939)

The second main problem was the nature of CR: at the end of 1920s the common
opinion was that CR are high-energy gamma rays (concepts developed by Millikan and
Cameron, 1928a,b). As became clear later in the 1930s, this opinion was wrong.



Chapter 1. Cosmic Rays as Object of Research 7

However, it generated a lot of attempts to determine the directions to the sources of CR
and gave the impulse to develop the astrophysical aspect of CR research. The CR
latitude survey of Millikan (1930), obtained a negative result (no latitude effect), which
was considered as an important support of the Millikan and Cameron (1928a,b) concept.
But other direct measurements of CR intensity vs latitude made mostly in connection
with the First Geophysical Year (Clay, 1930, 1932; Compton, 1932, 1933) indicated that
a small latitude geomagnetic effect at sea level exists (about 10-15%), and at least some
part of primary CR are charged particles. The problem of the nature of the CR was a
subject of a great famous public discussion between the Nobel Laureates Robert
Millikan and Arthur Compton in December 1932 in Atlantic City during the winter
meeting of American Physical Society (see Fig. 1.2.1); this discussion prolonged several
years.

.

Nobel Prizewinners In Hiétoric
~Debate Over Cosmic-Ray Origins

MEET IN FRIENDLY RIVALRY
Robert A. Millikan, Pasadens (Left), and Arthor 1. Complen. Chi-
eage, Whe Teday Discuseed Physical Researeh Findings

COSMIC RADIATION
FOES BATTLE OVER
THEORIES OF ORIGIN

P.5-N. Dec.30'32———
Dr.Robert A. Millikan, Dr. Arthur IT. Compton
Present Opposing Ideas:on Whether Cosmos
' Being Recreated or Disintegrated

d evidencar Lhel
hysical seientiste. gathared at At- | Mitlikan advenes I
‘I’nr?;lt City for (he winter mesl-|ihey are secondary radiklion pro-

What most of the 2000 or moulnmn them the ofiginal rays. Dr.

Fig. 1.2.1. The page of newspaper The Pasadena Star News of December 30, 1932 on the discussion about the
origin of CR. From [.V. Dorman (M1981).
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To obtain more exact results, latitude CR surveys were continued by Clay (1933),
Compton (1936), Compton and Turner (1937), Johnson and Read (1937). In particular,
Compton and Turner (1937), during their 12 CR latitude surveys throughout the Pacific
Ocean, found that the measured latitude effect changed with the seasons; they came to
the conclusion that about 2/3 of the latitude effect is caused by the influence of the
geomagnetic field on the primary CR, and about 1/3 by CR meteorological effects
(difference in air temperature between the equatorial region and the mid-latitude region).
The common opinion in those times was that primary CR are mostly charged particles.
But experimental evidence of this was obtained only later, when the CR latitude effect
was measured on balloons in the stratosphere by Bowen et al. (1937, 1938), Vernov
(1938, 1939). In particular, Vernov (1939) found that the CR intensity in the stratosphere
is about four times smaller at latitude 5° than at 56°. From this he came to the conclusion
that at least 90% of the primaries CR are charged particles.

1.2.4. Discovery in secondary CR positrons, muons, pions, and other
new elementary particles (1932—-1950)

The multitude of observations of secondary CR particles near the ground with a
Wilson chamber in a strong magnetic field carried out at the beginning of the 1930s gave
the possibility of observing not only the tracks of CR particles, but also of determining
their energy and rest mass. Use of some absorber (e.g., Pb or Al plates) inside the
chamber made it possible to determine the direction of the particle’s velocity and the
sign of its charge. The first person who observed by this method the positive electron —
positron, predicted by relativistic quantum electrodynamics developed by Dirac (1930,
1931), — was Anderson (1932, 1933a,b). Fig. 1.2.2 depicts the first famous photograph of
the positron’s track, obtained by Anderson on August 2, 1932 (for the discovery of
positrons in CR C.D. Anderson received the Nobel Prize in 1936, together with V. Hess,
who discovered CR in 1912).

Fig. 1.2.2. The first famous photograph of a positron track, obtained by Anderson (1932).
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It was the first antiparticle predicted by the new relativistic quantum theory and its
discovery was very important for the development of the fundamental basis of
elementary particle theory. After this muons, pions and various strange particles were
discovered in the secondary CR during 1937-1950 (see in detail in 1.V. Dorman,
M1981, M1989).

1.2.5. Investigations of the sign of primary CR charged particles
(1933-1950)

Let us note that as a result of detailed investigations of the CR latitude effect, many
scientists came to the conclusion that primary CR can be high energy electrons or
positrons (positrons were discovered in CR in 1932, see above, Section 1.2.4).
Determination of the sign of the primary CR particles can be achieved using the
azimuthally geomagnetic effect: if the sign of primary CR particles is positive the flux of
particles from the West will be bigger than from the East. The West—East geomagnetic
effect was discovered in 1933 on the basis of measurements by CR telescopes at sea
level and at mountain altitudes. According to Johnson (1933) the CR flux from the West
was bigger than from the East in Peru (near the equator) by about 7% at sea level and
16% at 4200 m above sea level. Johnson (1933) came to the conclusion that about all
primary particles must be positive. In the middle of the 1930s were made a lot of
investigations of geomagnetic effects at different altitudes and latitudes on balloons. In
the review of these results Johnson (1938) came to the preliminary conclusion that
primary CR are very probably mostly protons rather than positrons. But finally this
problem was solved by the experiments carried by Schein et al. (1941) on balloons
which reached the altitudes up to 20,000 m. To the end of the 1940s direct measurements
of primary CR contents at high altitudes by different apparatus (mostly on balloons)
finally established that primary CR are not gamma rays and not electrons or positrons,
but positively charged particles such as protons, alpha—particles, and heavier nuclei (total
about 99%), and only about 1% are high energy primary electrons, positrons, and gamma
rays. Secondary CR are mainly composed of pions, kaons, muons, protons, neutrons,
electrons, positrons, photons, neutrinos, and a lot of very short lived strange particles. At
this time CR were beginning to be widely used as an important natural source of
energetic particles for research in nuclear and elementary particle physics.

1.2.6. The first attempts to measure CR time variations (1923—1935)

As mentioned above, at the beginning of the 1920s the main opinion was that CR are
high energy gamma rays, and many scientists tried to discover the object where CR were
generated, and to determine the direction to this object. If the main source is the Sun, CR
intensity must have a solar-daily variation but if the source is out of the Solar system the
CR intensity should exhibit a daily variation in stellar time (stellar-daily variation). The
first researcher who reported the discovery of big CR stellar-daily variation, was
Kolhorster (1923), relying on observations at altitudes from 2,900 m up to 4,100 m and
in tunnels of railway to Mt. Jungfraujoch in Switzerland. The measurements were made
using 5 different ionization chambers (including measurements under 4.5 m ice to
exclude the influence of radioactivity). Kolhorster (1923) came to the conclusion that
there is no CR solar-daily variation, but rather CR stellar-daily variations with an
amplitude of about 15% with the maximum occurring at time of Milky Way culmination.
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Many scientists tried to repeat and test this result. During the investigations of CR
time variations, Myssowsky and Tuwim (1926) discovered the existence of a CR time
variation connected with the change of air pressure (barometric effect); the existence of
this effect was confirmed with much higher accuracy by Steinke (1929). Moreover,
Steinke (1929), after correcting the observed data for the barometric effect, did not find
any periodic daily CR variations in stellar or solar time above the errors bars. Millikan
and Cameron (1928a) according to measurements on the altitude 4,700 m also did not
find any effect of Milky Way culmination, and they came to the conclusion that CR
sources are distributed approximately homogeneously in the interstellar space. Hoffman
(1932) reviewed all experimental results obtained before 1932 and came to the
conclusion that within the experimental error bars (about 1%) there is no observed
evidence of a CR stellar-daily variation.

The interest in CR stellar-daily variation reappeared in connection with the hypothesis
of Baade and Zwicky (1934a,b) that the main sources of CR are supernovae explosions
with a giant realization of total energy. To test this hypothesis, Kolhorster (1935)
measured by counter telescope the possible effect on CR of the Nova explosion in 1934
in Hercules: he found this effect to be about 1.7%. Messerschmidt (1935) found for this
Nova explosion 2.5% effect (on the basis of measurements by ionization chamber). But
the observations carried out at the same time with much higher accuracy by Hess and
Steinmaurer (1935), and Barnothy and Forro (1935a,b) showed that within the error bars
there is no significant effect.

The first results on the CR solar-daily variation was obtained with a good accuracy on
the basis of CR measurements using ionization chambers by Lindholm and Hoffmann
(1928): it was found that the amplitude is 0.4—0.5%, and the maximum CR intensity
occurred in few hours after noon, and minimum intensity at mid-night. These results
were confirmed by Compton et al. (1932) on the basis of CR measurements using
ionization chamber on Mt. Evans.

1.2.7. The Ist worldwide network of CR observatories equipped by

ionization chambers; main results on CR variations (1934—1952)

The important step in CR time variation research was made in the 1930s: Compton et
al. (1934) constructed a special precision ionization chamber with compensation,
shielded by 10.7 cm Pb. The spherical main chamber with volume 19.3 liters was filled
with argon at a pressure of 50 atm. Ionization current generated in the main chamber by
CR was mainly compensated by a constant current from a small subsidiary chamber with
an uranium radioactive source. The value of the resulting current was recorded
continuously on a moving tape by Lindemann’s electrometer. As part of the first
worldwide network of CR stations such chambers were installed in Resolute (Canada),
Godhavn (Greenland), Ottawa (Canada), Cheltenham and Climax (U.S.A.), Teoloukan
(Mexico), Huancayo (Peru) and Christchurch (New Zealand). One hour and two hour
data of CR intensity observed on these stations were published by Forbush and Lange
(M1948, M1957). In 1949-1951 this net of ionization chambers was significantly
extended: in former USSR this type of chamber was developed and contained
automatically working chambers with a volume of 950 liters and 50 liters (ASC-1 and
ASC-2). Seven new CR Observatories were equipped with these chambers at Heiss
Island and Cape Schmidt at high North latitudes, in Moscow, Sverdlovsk
(Yekaterinburg), Irkutsk, and Yakutsk at middle latitudes, and in Tbilisi of low latitude.
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One hour data of CR intensity obtained at these stations for many years were published
by Shafer and Shafer (M1985).

The worldwide network of ionization chambers worked continuously for more than
three solar cycles (see description on this network below, in Section 4.2).

On the basis of this continuous record of many types of CR effects and time
variations in the intensity of CR hard (muon) component there were discovered:
temperature effect and effect of CR intensity increase caused by energetic particles from
great solar flares (solar CR ground level effects in February—March 1942, in July 1946,
and in November 1949), effect of CR decrease during great geomagnetic storms
(Forbush effect), solar daily, 27—days, seasonal, and 11—year variations. These data and
others obtained later will be considered in detail in the present book, and in the next one
(Dorman, M2005 ).

On the basis of measurements made by Shonland et al. (1937) in 1933-1935 in
Capetown (35° S) it was found that the amplitude of the solar daily CR variation is not
constant: in summer it is much higher than in winter (as became clear later, it was caused
by the influence of CR solar-daily temperature effect). As a result of detailed analysis of
CR data for the period 1936—1946 on stations of the Carnegie Institute equipped with
ionization chambers of Compton’s type (Compton et al., 1934), Elliot (1952) found (by
averaging data of 11 years) a regular solar-daily CR variation with amplitude 0.15% and
time of maximum at about 3 p.m. in Cheltenham and Christchurch, and at about noon at
Mt. Huancayo.

Analysis of the data from these stations carried out by Monk and Compton (1939) and
Forbush (1940), allowed the observation of systematic changes in CR intensity with a
period of about 27 days that corresponds to the period (relative to the Earth) of the Sun’s
rotation about its axis. The first results on CR 27-day variation were obtained by Hess
and Graziadei (1936) on the basis of CR observations by ionization chamber on Mt.
Hafelekar.

By analysis of the Carnegie Institute stations CR data, Roka (1950) found the
connection between the annual Wolf sunspot numbers and annual average of CR
intensity (1l—year variation): with increasing solar activity, CR intensity decreases
(correlation coefficient —0.8). More detailed data on CR 11—year variation was obtained
by Forbush (1957).

At the beginning of 1930s Messerschmidt (1933) reported on CR intensity decrease
during some geomagnetic storms by about 1%; according to Steinmaurer and Graziadei
(1933), the average decrease during 17 storms was 0.3%. These measurements were
made by ionization chambers at one individual station, and it was not clear if this effect
is of local or planetary character. Only after establishing the first network of Carnegie
Institute CR stations did it become possible to investigate this problem. The phenomenon
of planetary CR intensity decrease was first observed by Hess and Demmelmair (1937)
during the great magnetic storm started on April 24, 1937. Later this phenomenon was
investigated in detail by Forbush (1938), and in the 1950s it came to be called the
Forbush—decrease or Forbush—effect. The first attempt to explain CR effects during
geomagnetic storms was made by Chapman (1937): he assumed that the magnetic field
of the equatorial ring current (formed during the main phase of a magnetic storm) shields
the Earth from the approaching CR, so that the CR flux on Earth decreases. But more
detailed calculations of Johnson (1938) and Treiman (1953) showed that the decrease in
CR intensity can be realized only if the radius of the equatorial ring current is smaller
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than 1.3 Re (Re is the radius of the Earth). Since the radius of the equatorial ring current
is in fact much larger, it was expected that the influence of the ring current’s magnetic
field will cause the CR intensity to increase, rather than to decrease (after this the effect
of increase of CR intensity during main phase of magnetic storm was first observed by
Yoshida and Wada, 1959; see review in Dorman, M1963a,b, M1974, and in more detail
about main causes of this effect and Forbush decrease — in Dorman, M2005).

The first explanation of the temperature effect was given by Blackett (1938) taking
into account the decay of muons: during the heating and expanding of the atmosphere
(e.g., from winter to summer, or from night to day) the path of muons from the higher
atmospheric level (where they are generated) to the ground becomes longer, and more
muons decay, leading to decreasing of the muon intensity (negative temperature effect).
Later it became clear that this effect is much more complicated: 1) it is necessary to
account for the mass distribution in the atmosphere (Feinberg, 1946), 2) the discovery of
the positive temperature effect led to the explanation of muon generation through decay
of charged pions (Forro, 1947; Duperier, 1949, 1951); and 3) it is necessary to account
for the distribution function of pion generation in the atmosphere and develop an integral
method that includes all these effects (Dorman, 1951, 1952, 1954a,b, M1957; Olbert,
1953; Maeda and Wada, 1954). Much more complicated is also the barometric effect: in
Chapter 2 it will be shown that it actually consists of three effects: absorption, decay and
generation effects (the relative role of these effects depends on the altitude of
observations and the value of total detector shielding (including the underground depth
in the case of underground observations). During the preparations for the IGY, the theory
of meteorological effects for neutron and general components was also developed
(Dorman, 1958a,b; M1957).

Let us note that the discovery of solar CR generation in periods of great solar flares,
and solar-daily CR variation with its maximum near noon, led to the development of a
wrong theory of the origin of CR in the Sun and in the solar system (CR observed up to
very high energies are considered as a local phenomenon, they are to be confined only to
thesolar system): Richtmyer and Teller (1948), Alfven (1949, 1950). But later (Dorman,
M1957) it was shown (by determining the energy spectrum of the solar-daily variation
and taking into account the influence of geomagnetic field on trajectories of CR
particles) that the real maximum of flux caused by solar-daily variation is directed in the
interplanetary space not from the Sun, but from a perpendicular direction. Modern data
in gamma ray astronomy also show that CR observed in the solar system have about the
same intensity as in the Galaxy. The contribution of solar CR is negligible; only during
some short time periods of great GLE the part of solar CR became significant and even
can be much bigger than part from galactic CR.

1.2.8. Construction of neutron monitors and the greatest GLE of

February 23, 1956; the IGY and the 2nd CR wide network (1952-1959)
During the great GLE of November 19, 1949, secondary neutrons were registered by
a detector in Manchester (Adams, 1950). The detector was based on two proportional
counters filled with B'°F; gas, surrounded by thick graphite blocks for braking high
energy CR neutrons to thermal neutrons. This detector registered about 500% increase,
much higher than the increase in the hard component of CR (about 11%). This result
showed that the neutron component is much more sensitive to small energies of primary
CR than the hard component. However, this detector has a big deficiency: it is very
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sensitive to the changes in the surrounding matter, where a sufficient number of
secondary small energy neutrons also are generated by CR neutrons. This deficiency
made it impossible to use Adams’s (1950) detector for registration of the usual time
variations with much smaller amplitudes. To surmount this deficiency, Simpson et al.
(1953), Simpson (M1955) developed this detector to add blocks of lead (Pb) as a
generator of secondary small energy neutrons and replaced graphite by paraffin blocks
with a big content of hydrogen which slows the neutrons much more effectively to
thermal energies. During 1952—1954 Simpson’s detectors equipped CR Observatories in
Chicago, on Mt. Huancayo, Mt. Climax, and Mt. Washington. This detector with an

effective area 2 m? (consisting of 12 proportional B10F3 counters with 6 cm diameter

and 100 cm length), called a neutron monitor (NM) was recommended in 1954—-1955 to
be used as one of the main detectors during International Geophysical Year (IGY, July
1957-December 1958). This type of neutron monitors is now called NM IGY type (see
detailed description in Simpson, M1955 and in Dorman, M1957; on the worldwide
network of these detectors — below, in Section 4.4).

For measuring the charged CR components (muons and electron-photons) it was
recommended to use telescopes of cubic or semi-cubic geometry as well as multi
directional telescopes on Geiger-Muller gas filled counters and on scintillators based on
the ground at different altitudes and latitudes, and underground at different depths (see
detail description in Dorman, M1957, M1974, M1975a; on the worldwide network of
these detectors — see below, in Section 4.3).

At the beginning of 1956 many CR observatories were equipped by NM and muon
telescopes. This was very important, since the biggest GLE of the last 70 years occurred
on February 23, 1956. A lot of data from continuously operating ionization chambers,
muon telescopes, neutron monitors were obtained for this GLE, as well as results from
balloon measurements. On the basis of these observations acceleration mechanisms in
the solar atmosphere during the dissipation of magnetic energy in a solar flare and the
main characteristics of solar CR propagation in the interplanetary space were developed
(see review and analysis in Dorman, M1957, 1958c, M1963a,b, Dorman and
Miroshnichenko, M1968). At the beginning of the IGY (July 1957) there were more than
50 continuously operating CR observatories equipped with ionization chambers, muon
telescopes, and NM IGY. Creation of a large network of CR observatories made possible
to investigate in detail many types of CR variations. For example, during a great
geomagnetic storm at August 29, 1957 a big Forbush decrease was observed, and, for the
first time, a very clear CR intensity increase before sudden commencement of magnetic
storm. This type of increase was very anisotropic and its detailed analyses brings
forward the discovery of high energy CR acceleration by reflecting from the
interplanetary shock wave moving from the Sun (Blokh et al., 1959). On the basis of
these data a drift mechanism of charged particle acceleration by shock wave was
developed (single acceleration, Dorman, 1959a, Dorman and Freidman, 1959), which
after about 20 years was extended to include multiple acceleration (shock wave diffusion
acceleration, Krymsky, 1977; Axford et al., 1977; Bell, 1978a,b; Blanford and Ostriker,
1978).

This period is characterized by a wide use of airplanes and balloons for CR research.
During this period many important results in investigations of CR meteorological and
geomagnetic effects, solar-daily, semi-solar-daily, stellar-daily, 27-day, seasonal, and
11—year variations were obtained. The main part of the results obtained during IGY was
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reported at the 6-th International Cosmic Ray Conference (Moscow, 1959). In particular,
before direct measurements of the interplanctary magnetic field (IMF), the strength of
this field in corpuscular streams of the first type (solar wind) was estimated by cosmic

rays: near the Earth’s orbit about several 107 Gs. For corpuscular streams of the second

type responsible for great geomagnetic storms with sudden commencement
(interplanetary shock waves) was obtained the strength of IMF about one order of
magnitude bigger (Dorman, 1957, M1957). Moreover, from analysis of the energy
spectrum of 11-year variation it was shown that in interplanetary space there is a
resonance scattering of CR particles (on magnetic inhomogeneities with dimension of
about the Larmor radius of particles), and that magnetic inhomogeneities have a broad
spectrum (Dorman, 1959b). Also this result was obtained a long time before direct
measurements of the magnetic field in space.

Let us note that in this period the modern theory of CR origin based on radio-
astronomy data was founded, from which direct information on space distribution of
primary CR relativistic electrons can be obtained (Ginzburg, 1953a,b).

1.2.9. Construction of super NM, the IQSY and the 3rd CR network,
wide use satellites and space probes for CR research (1960-1992)

Investigations carried out with the NM IGY show that for many investigations of CR
variations the statistical errors are too big. In order to decrease the statistical errors
significantly, and in connection with preparing for the new International Quiet Sun Year
(IQSY, 1964-1965) project, neutron super-monitors of the same geometry consisting of

18 neutron B10F3 counters with 15 cm diameter and 200 cm length with total effective

area 18 m’ (about one order bigger than area of NM IGY) were constructed in Canada
and in USSR. The detector was divided into three independently working sections (each

section with an effective area 2x3 m” with 6 counters). Instead of Pb blocks, Pb rings

were used, and instead of paraffin polyethylene was used. The neutron super-monitor
was recommended to use as one of main detectors during and after IQSY (for some time

60 they were called NM
IQSY or are shown the
number of counters
used and year of the
starts IQSY: 18NM-64,
6NM-64, 3NM-64, and
so on). In Fig. 1.2.3 are
shown how the total
numbers of NM IGY
and NM IQSY in the
World changed during

NMIGY the last 50 years.
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It can be seen that there is a big increase of the number of NM IGY before 1957 and
then they are replaced by NM IQSY after 1962—1963. Now only five NM IGY continue
to work in Potchefstrum (South Africa), and on the mountains: Haleakala (Hawaii,
USA), Huancayo (Peru), Climax (USA), and Jungfraujoch (Switzerland). NM IGY on
mountains has about the same statistical errors as NM IQSY at sea level. Most of the CR
observatories are now equipped with NM IQSY (for more details see in Dorman,
M1974, M1975a; the description of the 3rd worldwide network equipped with NM IQSY
— see below, in Section 4.4). The data (one hour values of intensity) of this network of
CR Observatories are collected in the World Data Centers, and can be used freely by any
scientist. On the basis of these data a lot of very important investigations of different
types of CR time variations of meteorological and magnetospheric origin, interplanetary
modulation, and solar origin were made: many results were reflected in books by Parker
(M1963), Dorman (M1963a,b), Kuzmin (M1964, M1968), Dorman and Miroshnichenko
(M1968, translation to English, M1976), Dorman and Kolomeets (M1968), Krymsky
(M1969), Dorman et al. (M1971), Dorman (M1972a,b), Dorman et al. (M1972), Velinov
et al. (M1974), Dorman (M1974, M1975a,b, M1978), Dorman et al. (M1978, M1979),
Alania and Dorman (M1981), Dorman and Kozin (M1983), Alania et al. (M1987).
Results obtained in this period will be considered also below in this book as well as in
the next book (Dorman, M2005 ).

The period considered (1960—1992) is also characterized by a wide use of balloons,
satellites, and space probes for investigations in all aspects of CR research: the Earth’s
radiation belts; CR albedo; measured radial and transverse gradients of CR in the
interplanetary space; and other phenomena were investigated in detail. These results will
be partly considered here, but mostly in the next book (Dorman, M2005). In this period
was developed the modern theory of CR origin mostly reflected in books Ginzburg and
Syrovatsky (M1963), Berezinsky et al. (M1990); it was started to investigate in detail the
chemical and isotopic contents of primary CR which are very important for development
of CR origin theory. In this period gamma ray astronomy was developed by
measurements on balloons and satellites: it was shown that not only relativistic electrons,
but also the nuclear component of primary CR are distributed in the disc and halo of our
Galaxy (in contradiction with the theory of solar origin of CR mentioned in Section
1.2.7).

1.2.10. Development of fundamental and applied CR research: step by
step formation of International Cosmic Ray Service, wide use of
Internet for real time data exchange, combining of ground and satellite

CR data (after 1992)

All hourly CR data from worldwide network of CR Observatories are sent each
month to the World Data Centers (WDC) in Boulder (Colorado, USA), Moscow
(Russia), and Nagoya (Japan), and any scientist can use these data. The problem is that
these data are not in real time scale. In 1991 was prepared the Project (Dorman, M1991)
on the foundation of the Israel Cosmic Ray Center, and on the step by step formation of
International Cosmic Ray Service (ICRS) on the basis of wide Collaboration of all CR
Observatories and on real-time scale exchange of one hour and one minute data. It was
shown by Dorman (1993), Dorman et al. (1993a,b,c), that in this case there could be
realized very important applications of CR research: using CR data for continue
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monitoring space weather and forecasting of space phenomena dangerous for people
health and technology in space near the Earth’s orbit and at different distances from the
Sun (important for space probes and spaceships with astronauts in interplanetary space),

in the magnetosphere (important for satellites and spaceships in different orbits), and in
the atmosphere at different altitudes and at different cut-off rigidities (important for
balloons, commercial jets, and in some periods for people and technology on the
ground). In Fig. 1.2.4 and 1.2.5 is shown the scheme of ICRS working and connection

with other organizations.

16

'SUDI Y3 JO HI0MBULIR) 2] Ul SUOIBZIUBSIO 1910 pue SALI0JBAISSQ) YD) PAIBIOQR|[00 Ud2M)3q BIep dFUBYDIX2 jo awayds pasoddng “$7° 1 Sy

'6'g'1 eandyy ur uonEnUNRUO)

I

YaIeasel YoIeasay [eluemep) |Sisk[euy Areuig puw
paydde pue [ejusurep bung pus uonjejead| |eBueyoxy ‘uonsee) 1nua)) eys(
-uny 10§ (ejep oueufew -18qu] Jo A10jer0qeT]] |BiRQ jo Ar03BIoqRT]| |plIOM Amy, [8eY]
-083 pu® orus0d Aq paut < >
.w_w%m wwumwmw%yﬁ (SYOI) ADIAYAS AVH OINSOD TVNOLLVNHUILNI
JmP9p uo ‘ung oty (poyew [esrydeidorioads
woy JuAcw §}I0YS A1 3 f § usn B8P A8 JIXS0d
.ﬁmccwa.uﬂ& pue Mvzoﬁ \%5 %Munowb%uvv qmm%.mmm
opeusew uo ‘ededs oy : - 1
uy uoneNnyIs oyjoudewor; 10 o Yoredsex perydds vﬁauwﬂuﬁaaﬁs.w‘%q& ul uonenyls 8yjy uo
-33[0 3 U0 IS] 9Y) 10§ 3 TUBY QAEIseY  pUB  SILIOJBAIISQQ SWI 103 uonorpead pue
UOUBTIIOJUT SRONUTIUO) 481 ormsod Joj uonnqustp  Arseuerd Ayprdu UOTJBULIOJUL  SNONUTU0Y
: : : 130 90 puB UOTRUTY  womNqLNSIp A319us eovds L8]] . . .
11809 JO UOHBLIBA BTUT} U0 UONBULIOFUT SNONUTIUOD),
ety [Bal
SUU——— (a1qrssod Jy) Ul S8IjU8)) YOIBISOY DUB (SuoneATesqo Ae1
-aydsouot pue sysuewosd Mama% wwwﬁwaﬂowﬁawawum TLrontosa0 Aes omso .wﬁmn Jx&o saoutd o .Mbﬁﬁ
. s et ! W0Jj BIEP UOWBLIBA OUI} 89) QYOI 10j axeydsourje
Mwﬂ%ommww Mwﬂwmﬂwmm.om uonBLIBA 9WIY KBl O[ISO) fex ormsoo oueydsojems| |syireg ey ur suonI