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FOREWORD  

WHAT ANI IS INTENDED TO DO. 
ANI (Applied Nonparametric Inference) code represents a unified methodology of big data 

analysis intensively using Machine Learning algorithms. Ani was widely used in high-energy 
Astroparticle physics community, in genome analysis and other. ANI platform consisted of 
different approaches to draw scientific inference and provide users with whole system of coherent 
methods for: 

• optimal utilization of information contained in experimental data and in the statistical 
models; 

• best feature subsets selection and initial dimensionality reduction of big data; 
• optimized methods of multivariate probability density estimation; 
• scanning of multivariate spaces to reveal embedded nontrivial structures; 
• nonparametric estimation of regression function; 
• Neural and Bayesian classification and background rejection. 
The main problems solved with ANI: 
• event -by - event analysis of Extensive Air Shower (EAS) data; 
• determination of the type and the energy of primary particles; 
• hadronic background rejection in detection of very high energy gamma rays with imaging 

Cherenkov telescopes; 
• genome analysis: finding a subset of genes responsible for the colon cancer; 
• Lightning classification. 

WHAT ANI IS NOT INTENDED TO DO. 

• Simulation of nuclear - electromagnetic cascade in the atmosphere; 
• estimation of the detector response; 
• ANI is not intended also for the repeated solution of identically parameterized problems 

(such as shower size reconstruction) where a specialized program will be in general much 
more efficient. 

NOTATION 

d  Dimensionality 
L Number of classes 
M Number of experimental events 
vi Vector of measured variables 
ui Vector of simulated events 

 Stochastic mechanism which generates experimental data 

 "Controlled" stochastic mechanism, obtain with simulation code 
V Event (measurement, feature) space 
A  Basic state space 
РA Prior measure 
𝐶YYZ	  Losses (cost) measure 

 Conditional probability density function (pdf) 

 Estimate of conditional pdf 

 Posterior density. 

( , )A P
ˆ( , )A P

( / )kp v A
ˆ ( / )kp v A
ˆ ( / )ip A v
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CHAPTER 1.  
INTRODUCTION 

PROBLEMS OF DATA ANALYSIS IN COSMIC RAY PHYSICS 

No model is true, only useful 

The scientific method is characterized by data classification, the study of their interrelations 
and relations to past experience, accumulated in various theories and hypotheses. Usually, it is 
impossible either to prove or to refuse hypotheses by deductive method. The challenge is to draw 
sensible conclusions from noisy, discrepant information. 

Modern arrays of particle detectors covering a large area are measuring different numerous 
secondary products of the primary cosmic ray (PCR, mostly protons and fully stripped nuclei) 
interactions in the atmosphere. Only a simultaneous measurement of a large number of 
independent parameters in each individual Extensive Air Shower (EAS) can yield reliable 
information to reconstruct the particle mass and its energy as well as the phenomenological 
characteristics of strong interaction with atmosphere nuclei. 

The ambiguity of interpretation of the results of experiments with cosmic rays is connected 
with significant gaps in our knowledge of the characteristics of hadron - nuclear interaction at 
highest energies, and, with strong fluctuations of all shower parameters. The extra difficulties are 
due to the use of Monte - Carlo simulations of development and detection of different components 
of nuclear electromagnetic cascade and inherent reductionism of these models. 

To make the conclusions about the investigated physical phenomenon more reliable and 
significant, it is necessary to develop a unified theory of statistical inference, based on non- 
parametric models, in which various nonparametric approaches (density estimation, Bayesian 
decision making, error rate estimation, feature extraction, sample control during handling, neural 
net models, etc.. .)  would be incorporated. 

The most important part of the presented approach is the quantitative comparison of 
multivariate distributions and use of a nonparametric technique to estimate the probability density 
in the multidimensional feature space. As compared to the earlier used methods of inverse problem 
solution, in ANI the object of analysis is each particular event (a point in the multivariate space 
of measured parameters - feature space) rather than alternative distributions of model and 
experimental data. 

By considering all measured EAS parameters simultaneously, we are able to incorporate 
important information about their relationship and outline in multidimensional feature space 
nonlinear regions where events of definite type mostly grouped. That is why, along with the 
averaged characteristics, the belonging of each experimental event to a certain class (primary 
nuclei group, hadron or gamma ray image) is determined. 
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The advocated approach was used to estimate the upper limit of the iron nuclei fraction 
according to the gamma - family characteristics, registered by PAMIR collaboration [23, 24, 25, 
26, 27]. It was the first attempt to make PCR studies on event-by-event basis. 

A multidimensional analysis was applied for classification of the Cherenkov images of air 
showers registered by the Whipple observatory. It was shown that the use of several image 
parameters together with their correlations can lead to a reduction of the background rejection  

down to a few tenths of a percent while retaining about 50% of useful (gamma-rays induced) 
events. The application of multivariate technique to the famous Crab detection data file (Whipple 
observatory - 1988-1989) [29], proves the advantage of the new background suppression technique 
and - achievement of considerable enhancement of source detection significance [31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. 

ANI was intensively used for KASCADE and MAKET ANI experiment data analysis [46, 47, 
48, 49, 50, 51, 52, 53]. Obtained results on the energy spectra of different nuclei groups of PCR 
represent a "mass spectroscopy" in "knee" region, and allows to obtain the basic results  in the 
long standing PCR origin and acceleration problems. 

1.2 SIMULATION FOR EXPERIMENTS IN THE ASTROPARTICLE PHYSICS 

The most difficult and most important part data analysis in the high-energy physics is the 
comparison of competitive hypotheses and decision making on the nature of the investigated 
physical phenomenon. 

In the cosmic ray physics the main technique of statistical inference, connected the with 
problem of determination of initial physical parameters (such as mass composition and energy 
spectrum of PCR, strong interaction characteristics, flux of very high energy gamma rays from 
point sources, etc.. .) ,  -  is the direct problem solution with detailed simulation of the cosmic ray 
traversal through the atmosphere and the detectors with a following comparison of the simulated 
and experimental data. Actually, an algorithm is constructed, which describes EAS development 
and registration of its different components on the observation level, which is based on a certain 
model of the process investigated, i.e. the set of the parameters that characterize the PCR flux and 
interaction of incident hadrons with the air nuclei. 

By simulations with different models and comparing the experimental and model data, a class 
of models is selected, which describe the experimental data satisfactorily. Such an approach allows 
us to discard a certain class of non-satisfactory models, but the available experimental data usually 
do not allow one to select a unique model among the many proposed. 

For almost all problems of inference, the crucial question is whether the used models are in 
fact consistent with data. Of course, any inference is conditioned on the model used, and, if the 
model is oversimplified, so that essential details are ever omitted, or improperly defined, at best 
only qualitative conclusions may be done. The actual need of a reliable M.C. code can be illustrated 
by contradicting results of physical inference on elemental composition, presented in the literature 
on basis of different simulation procedures. Based on the measured intensity of gamma-families 
detected by emulsion chamber experiments at high mountain altitudes [56], the Fuji-Kanbala 
group concluded that beyond the knee iron nuclei are dominating in the primary flux [57]. On the 
other hand, using the same data, the Chacaltaya and Pamir collaborations [58] insist that the origin 
of the knee is due to a change of the character of the hadronic interaction, while the elemental 
composition remains approximately unaltered. 

Using an alternative observation technique, the Fly's Eye group claims [59] a significant 
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change of primary composition towards approximately pure proton content at energies larger than 
1017eV, in contrast the Akeno group could not find a significant change in composition at these 
energies [60]. These cases of conflicting results, reflect essentially the different theoretical 
"calibration" of the data and inadequate simplifications of the analysis techniques. 

There is a general agreement [55] about the vital importance to develop a simulation program 
that invokes the actually best and most detailed treatments of all physical processes, relevant to 
EAS development, in order to be used, tested and cross checked for consistency by different 
groups, without adapting the model parameters for each actual case in different way. With the 
CORSIКA [54] program developed in context of the KASCADE experiment there is a modern 
code available, using efficient Monte-Carlo techniques. It includes various options of alternative 
interaction models, generally accepted to be valid up to 1016-1017 eV. 

Similarly, there is an established code: The CERN detector simulation package GEANT [61] 
for the simulation of detector response function of complex detector setups in presence of various 
different radiation sources. This widely used code is widely used to transform the theoretical EAS 
variables into the form “registered” by the actual apparatus and can be compared with the 
experimental data. Both programs CORSICA and GEANT are published, freely accessible and 
matter of continuous refinements by concerned study groups. 

For comparing experimental and simulated data, we need to generate large samples of the 
observables, including realistically modeled all types of fluctuations for mimicking experimental 
detectors measuring with high precision many EAS parameters. Additionally, a "comparator" is 
necessary, based on coherent statistical methods for the analysis of nonparametric multivariate 
distributions with hidden nonlinear dependences. What we need is a well-defined technique, what 
one can call Monte - Carlo Inference. The presented approach to develop such a techniques 
considers the classification and hypothesis testing problems in the framework of Bayesian and 
Machine Learning paradigms and the main steps of the unified data analysis methodology are as 
following. 

1.3 ANI  STRATEGY 

1.3.1 SELECTION OF THE BEST SUBSET OF VARIABLES 

The data preprocessing is a first step in data analysis. 
Both experimental and simulation event are checked for "outliers" - events with very big 

deviations according to "expected" values. 
Then the "best subset of measurements" (in the sense of great discriminative power in 

classification to 2 categories) is selected from a variety of potentially useful variables. Proceeding 
from the initial dimensionality, a "worst" feature is selected, according to reduction of 
Bhattacharya distance, calculated for all variants of the reduced variable subsets. 

The quantitative comparison of variables is done by means of the, so called, P-values of 
statistical tests, showing the relative discriminative power of the variable. The greater this value, 
the smaller the probability of the H0 hypothesis to be correct. H0 consists in the statement, that the 
two independent samples come from the one and the same population. The smaller this probability, 
one can reject this hypothesis with greater confidence and accept the alternative hypothesis: that 
two samples come from different populations. And the "distance" between populations is 
proportional to the P-value. Three different tests are used: the parametric Student test, the 
nonparametric Kolmogorov - Smirnov and Mahn - Whitney tests, based on ranks. The last two 
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does not require any assumptions about the shape of the underlying distributions. 
Since interdependencies among the variables affect most of multivariate analyses procedures, 

it is worth examining the correlation matrix of EAS parameters. 
The correlation analysis can help in the selection of the "best" feature pairs. The calculated 

Fisher matrix point on significant difference of pair-wise correlation in different classes. 

1.3.2 BAYESIAN ANALYSIS 

The Bayesian approach provides the general framework of incorporating of prior and 
experimental information. Bayesian decision rule, that assigns observable v  to the class with the 
minimal posterior losses, takes into account estimates of conditional probability density and all 
possible losses due to any decision. 

The posterior density is basis of statistical decisions on particle type and on the closeness of 
the simulated and experimental data samples. The term closeness refers to the degree of 
coincidence, similarity, correlation, overlapping or any such measure. Bayes classifier provides 
minimal losses (probability of error) among all classifiers for the same feature set. However, the 
Bayes classification meets several difficulties, as the analytic expressions of conditional densities 
and, hence, the posterior ones, are unknown. Therefore, we are obliged to use their nonparametric 
estimates. Nonparametric in the sense, that density function is not a particular member of a previ-
ously chosen parametric distribution family, but an estimate based only on sample information, 
and - on very mild conditions on the underlying density (usually only continuity). The well-known 
Parzen and К Nearest Neighbors (KNN) estimators are used in ANI. 

The nonparametric regression is used for energy estimation. The peculiarity of solution of the 
regression problem in the cosmic - ray physics is the fact that neither the true spectrum 𝑓(𝐸)	nor 
the conditional density 𝑃(𝑣/𝐸) are known in the general case. The method is based on the obvious 
fact that the events close to each other in some metric in the feature space have similar energy - 
the geometrical consistence. 

1.3.3 NEURAL NET SOLUTIONS 

The alternative very powerful classification and estimation technique is connected with the 
development of mathematical models of Feed-Forward Neural Nets (FFNN). The input layer of 
the feed - forward network have one node for each feature, signal processing is performed layer 
by layer starting from the input. Neurons of successive layers receive input only from neurons of 
the previous layer and each neuron in a given layer sends its output to all nodes in the next layer. 
The neuron(s) of the output layer produce the discriminant function(s). 

The training is performed with simulated data or/and calibration results (if available). The 
initial values of net parameters are chosen randomly from Gaussian population with zero mean 
and not very large variance. The training of FFNN consists in multiple processing of all training 
samples with iterative modifications of connection coefficients (weights). 

The quality function minimization is usually done by the "so called" back propagation method, 
the gradient descend is performed on the quality function with respect to the weights in order to 
minimize the deviations of the network response from the desired "goal" response. The main 
drawback of such methods is their convergence to local minimum, in contrast, implemented in 
ANI different scenarios of random search allows to escape from the local minimum region and 
continue the search till the better solution will be found. 

A common complaint of NN training techniques is the dependence of the final classification 
scheme on the purity and finiteness of training sets (small training samples effects). However, due 
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to the inherent robust characteristics of FFNN, neural classification is relatively insensitive to 
modest impurities in the training sets. 

1.3.4 ROBUSTNESS CONCEPT 

In general, referring to a statistical estimator, the robustness means the insensitiveness to small 
departures from the idealized assumptions for which the estimator is optimized [63, 64]. The word 
"small" refers to both: small departures for all data, or large departures for a small number of data. 

For example, the particular nonparametric density estimator has to be tuned according to the 
unknown distribution function. Our modification of estimators – the, so-called, probability density 
L-estimator didn't require determination of the unique "best" parameter for the whole data set, 
rather a wide interval of parameters, one of which will be automatically chosen for the appropriate 
data point. 

1.3.5 VISUALIZATION 

For such abstract procedures, as multivariate mapping and classification in multidimensional 
spaces, the visualization is of crucial importance. After classifying experimental data according to 
training sample classes, a necessary analysis step is to examine the initial feature space for 
outlining the regions of acceptation of one or another hypothesis. Usually there are physical 
arguments about location of such "clusters". 

For example, "heave-nuclei" initiated EASs in 𝑁# 	− 𝑁% coordinates tend to occupy left- top 
quarter; the Cherenkov images, initiated from primary 𝛾 −quanta, have very specific shape in 
Hillas parameter space, etc.  

A special "DENCURVE" key word of ANI provide possibility to store and visualize the 
multidimensional clusters in CERN PAW ntuples. 

A special Bayesian scanning of multivariate space produces nonlinear multidimensional 
clusters corresponding to EAS, initiated from chosen primary nuclei group.One can easily examine 
nonlinear interdependencies between EAS variables using wide possibilities of PAW utility. 

  1.3.6 LIMITATIONS AND PERSPECTIVES OF DEVELOPMENT 
The potential difficulties and limitations of the ANI package are connected with model de-

pendence of statistical inference. The question of correctness of the model itself is always open 
and we need a more general procedure to check the model validity and obtain physical results not 
so crucially depending on the prechosen models. 

One possibility of model - independent inference is connected with cluster analysis: to scan 
the multidimensional feature space to find singularities of probabilistic measure without 
incorporating any simulations. However, difficulties will encounter with physical interpretation of 
the embedded structures. 

The second one is connected with the idea of integration over plausible models. Proceeding 
from a list of acceptable models – a model-integration procedure (committee method) can be 
defined for tuning both astrophysical parameters (composition, spectra) and strong interaction 
parameters.  
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CHAPTER 2. 
HOW TO USE ANI 

PROGRAM SUMMARY 

Title of program - ANI - Applied Nonparametric Inference 

Computers - DEC-ALPHA, SGI, PENTIUM based UNIX workstations. 

Operating system - UNIX, LINUX 

N of bits in a word - 32 

Programming language used - FORTRAN 77 

Number of code lines > 10,000 

2.2 KEY WORDS 

• Monte-Carlo Statistical Inference; 

• Nonparametric Methods; 

• Pattern Recognition; 

• Multivariate Statistical Techniques; 

• Bayes Risk estimation; 

• Probability Density estimation; 

• Classification; 

• Artificial Neural Networks in Data Analysis; 

• Sampling methods; 

• Genetic Algorithms; 

• Evolutionary   Programming. 

2.3 SOURCE CODE 
The source code is written in standard FORTRAN77 including several routines from CERN 

program library. The "structure-creating" style of Fortran programming was used. Any function 
or procedure are represented by separate units (subroutines, or IF loops), provided with lines of 
explanations. 

The CMZ source code management system is used for bookkeeping and version archiving 
[65]. The same source code is available for the all platforms mentioned. The automatically check 
of platform will activate the appropriate to this platform translators, linkers and program libraries. 
The modifications of code performed on one platform are fully available for others, of course, if 
there is no significant difference in translators. 

For installation on a new platform the paths to system and CERN libraries have to be 
mentioned explicitly in CMZ KUIP files. 
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2.4 HISTORY OF ANI VERSIONS 
There exist several versions of ANI package developed for different computers and operation 

systems. 
YerPhI BESM-6 VERSION - 1985.5 

CERN IBM 3090 (VM) VERSION - 1986.6 

FIAN PDP 11/70 1987.2 

FIAN VAX VERSION - 1989.1 

YerPhI EC 1045 VERSION - 1989.2 

PATCHY VERSION - 1990.6 

DUBLIN VAX (UNIX) VERSION - 1990.7 

KfK IBM 3090 (MVS) VERSION 1993.5 

MPI VAX (VMS) Version 1993.6 

KfK UNIX version 1994.5 

YerPhI LINUX version 1994.8 

CERN NOMAD version 1995.4 

YerPhI Silicon Graphics version 1995.10 

YerPhI Pentium version 1996.1 

YerPhI CMZ alpha-97 version 1997.03 

CRD: HP ProLiant ML370 G5 Server version 2019.01  

2.5 RESTRICTIONS ON DATA SIZE 
Depending on platform used and memory available different restrictions on possible sizes of 

executed data files and formats are made by following declarations of Fortran PARAMETER 
command: 

parameter (in=8, imb=50000, il=5, imp=50000, ikcl=ll, ipr=5)  
parameter (maxley=5, maxnod=13)  

Current parameter settings available on FZK ALFA's are as follows: 

IL maximal number of classes 5 
IN maximal data dimensionality 10 
IMB maximal number of events in training sample 2000000 
IMP maximal number of experimental events 2000000 
IKCL maximal number of nuclei width variants 17 
MAXLEY maximal number of neural net layer 5 
MAXNOD maximal number of nodes in each layer 13 
IPR number of cost function variants 5 
 
All array declarations in ANI are made implicitly using above mentioned restrictions. The 
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declaration of arrays in subroutines also is made implicitly via transferred list of the formal 
parameters. These restrictions help to avoid main obstacle of Fortran programming ֊ absence of the 
utilities controlling the language structures. If any erroneous array dimension request encounters 
in input stream, detailed error report message is send and execution of program stopped. 

2.6 THE MAIN ANI PROCEDURES (MODES) 
The most important Key word is the analysis MODE, specifying the particular statistical pro-

cedure to be used. The selected operation M O D E  is printed in the first line of analysis passport, 
containing also description of all data subsets executed, and parameters of data analysis procedures 
used. Usually data analysis started with determination of intrinsic dimensionality of data -  
D I M D I M  mode, the two figures used for dimensionality estimates: the average of local 
dimensionality, and the global correlation dimensionality. 

Then a best data subset (in sense of discriminative value) is selected by the BHATA mode: 
proceeding from the initial dimensionality, on each step of dimensionality reduction a "worst" 
feature is selected and eliminated, according to the value of Bhatacharya distance, calculated for 
each variant of obtained subsamples. 

The O N E  D I M E N .  mode is examining single variables and evaluated their discriminative 
power. 

The COVCOR mode can help in the selection of the best pairs of the features. 
The calculation of the minimal achievable Bayes risk is performed in O N E - L E A V E - O U T -  

mode implemented to the training samples with known category. 
The C L A S S I F I C A T I O N  mode performs the attributing of the experimental events ac-

cording to training sample classes (a prior knowledge) using Bayesian decision rules. The true 
fraction of different types of events in the specially constructed distribution mixture is calculated 
if RECONSTRUCT key word is selected. 

The R E G R O  mode is used for energy and mass estimation. 
The alternative very powerful classification and estimation techniques represent the Neural 

Networks models. The parameters L E A R N I N G  a n d  C L A S S I F I  are used as an analogical to 
Baysian modes; the topology of net (number of layers and number of neurons in each layer) and 
parameters of random search of best for discrimination net parameters are specified in the b.in 
input file . 

2.7 DATA FILES 
ASCII format files with standard headers are used for the input of information. Also, format 

of PAW NTUPLES is supported. Data files are defined and referred by their names. The procedure 
of data reading can be checked line-by-line. Different selections, according to variables subsets, 
variables cuts, events numbers are possible. 

Special data files with fixed names are created to provide possibility of information exchange 
between different ANI modes. For instance the results of classification can be stored in a file to be 
executed by another ANI mode for estimation task (energy of the selected light and heavy nuclei). 
Several ANI modes are using statistical parameters and estimates calculated in previous runs. The 
Neural Net training scenarios implemented in ANI provided possibilities of multi-step search with 
tuning parameters and changing particular algorithms. The Bayes error estimates, calculated in 
O N E - L E A V E - O U T -  mode are used in C L A S S I F I C A T I O N  mode for fraction estimation. 
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Thus, following files with fixed names connected to particular mathematical numbers, 
provided possibility of data exchange between different ANI modes: 
       b.tem - for Bayes risk estimates; 

learn.dat - current values of neural net weights; 
For user interface following files are used: b.in - input stream; b.out - output stream; b.sys - 

error reporting. 

2.8 ANI-SETUP 

The ANISETUP graphic interface is designed for A N I  (Analysis and Nonparametric Infer-
ence) statistical analysis package. It is written on TCL.7.6 script language 7.6 and TK.4.2 toolkit, 
which are available on most of U N I X  platforms. The interface consists of two main parts: 

• bookkeeping of input and output information (Figure 2.1). 
• main input script setup for running the ANI program (Figure 2.2). 

2.8.1 BOOKKEEPING SETUP 

S e l e c t  b . i n  - Click on the icon and select "b.in" (input file). If it is the first run, the default file, 
named "b" will be downloaded. 
S a v e  b . i n  t o . . .  - Specify the name for current "b.in" to be saved. Different input files 
corresponding to the various operating modes will be archived under different names. By the 
default the "b" is saving with the same name. 
D e l e t e  button - One can select and delete the input file from the archive. 
R u n  button - Runs the main input setup. 

Next part is for viewing run results. Variants of red color message: New running, Program 
terminated correctly, Error detected. If the second message is printed, one can view the current 
results. In case of third message one have to view the "b.sys" file for error report. 
R u n  P A W + +  - Interface to CERN PAW++ 
V i e w  b . o u t  - View the output ASCII file, which is available in each running and contains the 
resulting information on current run. 
V i e w  b . s y s  - Detected errors during current running. 
R u n  C M Z  - Run CMZ, change the source code and recompile the program. 

At each new run all output files, besides the b.tem file ( "b.hbook", "b.out", "learn.dat")  will 
be overwritten. 
F i l e  t o  s a v e  b . o u t  - Specify the name for "b.out",  write comments if necessary (next icon) 
and press Save.  
S a v e  P A W  o u t p u t  - Specify the name for "b.hbook" and press Save .  
S e l e c t  l e a r n . d a t  - from first icon of this line one can select the archived "learn, dat" file, which 
contains the trained neural network parameters and Restore it for continuing net training from the 
point reached at the previous training cycle. After net training one can specify the file name to 
save the obtained "learn.dat" file. 
PAW file: - Select saved hbook file and run paw++( View PAW Arc.), or delete it (delete PAW Arc.). 
O U T  f i l e :  - Select saved output file and and View..., or Delete... it. E X I T  button - Exit from 
ANI-SETUP. 
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2.9 DATA TO DRIVE ANI DESCRIPTION AND EXAMPLE OF THE B.IN FILE: 
1. PARAMETER CONTROLS THE OUTPUT STREAM, (by selecting numbers from zero to 8, 

one can include various additional output information, to be printed into output file b.out, also 
permanently attached under mathematical number NT=2). DEBUG= 
3  

2. NUMBER OF DIFFERENT DATA CLASSES TO BE HANDLED AND NUMBER OF 
BUTSTRAP REPLICAS (L and NBUT numbers): 
2, 10 

3. TRAINING SAMPLES NAMES:  
K A S C A D E 1 0 0 0  
K A S C A D E 1 0 0 0  

4. CONTROL(EXPERIMENTAL) SAMPLE NAME:  
K A S C A D E 1 0 0 0 S  

5. DUMP ( ARCHIVE) SAMPLE NAME (name of the file to store current training sample with 
applied cuts and selections. 
N N - E S T  

6. PAW HBOOK NAME:  
b . h b o o k  

7. TOTAL NUMBER OF VARIABLES IN DATA FILES (dimensionality of training and control 
samples):   
5  

8. THE RELATIVE COORDINATES (coordinate of the first event)FOR EACH DATA FILE:  
0 , 0  

9. TOTAL NUMBER OF EVENTS TO BE READ FROM EACH DATA FILE:  
5 0 0 , 5 0 0  

10. FIRST EVENT COORDINATE and SIZE OF CONTROL (EXPERIMENTAL) DATA FILE: 
0,100000 

11. STATUS (DENCURVE - producing numerous PAW plots): 
DENCURVE 

12. OPERATION MODE*: 
(JMODE = DIMDIM, BHATA, ONE DIMEN., COVCOR, FWRITE, BETEST, ONE- 
LEAVE-OUT-, CLASSIFICATION, REGRO, BUTSTRAP, LEARNING, CLASSIFI, FAST, 
SUPERCUT, SOBOL-CUT, MULTI-CUT) 
L E A R N I N G  

13. THE TYPE OF DATA FILES(ASCII with header and weights, ASCII without HEADER, OR 
PAW NTUPLES, (ACCESS = SEQUENTAL, SIMPLE, NOMAD):  
S E Q U E N T A L  

14. DENSITY ESTIMATION MODE. Two general nonparametric modes are implemented, 
kernel density estimator and К nearest neghbours estimator. 
(JDEN = PARZ or KNN):  
P A R Z  

15. WEIGHTS IN REGRO MODE ( JDIST = LINEAR, SQUARE, UNIFORM):  
U N I F O R M  

16. FORMAT OF SEQUENTAL INPUT (FORMAT of ASCII string):                                                        
( 1 0 F 1 0 . 5 )  
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17. NUMBER OF DIFFERENT A PRIORY PROBABILITIES AND LIST OF PROBA-
BILITIES: 
(IAP number and AP array):  
3 
0.5, 0.5 
0.1,0.9 
0.01,0.99 

18. RECONSTRUCT FIRST TYPE EVENTS PORTION?:  
R E C O N S T R U C T T  

19. NUMBER AND VALUE OF NUCLEI WIDTHS (OR LIST OF NEAREST NEIGHBORS): 
(KCL number and F array)  
5  
0.3,0.4,0.5,0.6,0.7 or 15,25,50,100,1502,5 пт 

20. MAXIMAL EXPONENT IN PARZEN DENSITY ESTIMATION AND STRANGNESS 
CRITERIUM IN BAYESIAN DECISION RULE: (expmax and Strange): 
9000000.,0.0000000000000000001 

21. NUMBER OF NEAREST NEGHBOURS FOR DIMDIM AND REGRO MODES, NUMBER 
OF PRINCIPAL COMPONENTS IF PCA MODE SELECTED (NEI= ):  
1 7  

22. VARIABLES TO BE PROCESSED (AMOUNT AND RELATIVE NUMBERS) (N number 
and NUMB array): 
2 

             3,4 
23. THE MINIMAL DIMENSION OF BEST VARIABLES SUBSET TO BE CHOOSEN BY 

BHATA SUBROUTINE (INTDIM= ): 
1 

24. LOWER BOUNDS OF VARIABLES (AMIN array):  
-9999999,-9999999 

25. UPPER BOUND (AMAX array):  
9999999,9999999 

26. Random generator used (genert = pseudo, or lp-tau - a uniform sieve in N-dimensions): In 
BETEST mode also RANNOR, NORRAN and NORMCO generators are used,  
P s e u d o  

27. DATA TRANSFORMATION TYPE (normalization to 0-1 - renorm, principal component 
transformation -pea), : 
norenorm 

28. PARAMETERS OF PAW HBOOKS (FOR READ AND WRITE): 
(ntupw (r) - opening code; ntinw(r) - ntuple or histogram ID, MEMw(r) - memory size, 
IFOw(r) - hbook ID)  
1,10,100000,11  
0,20,1000000,22 

29. ID of Ntuple from which input data is downloaded in the NOMAD mode 
1, 2 

30. NEURAL NET CONFIGURATIONS OF LAYERS, N OF NODES IN EACH LEYER. 
(LEYERS number, NODES array): 
3,2,5,1 

31. N OF ITERATIONS, STEP VALUE, SIGMA CRITERIUM, 
INITIAL SPREED, RANDOM GENERATOR SHIFT (NITER, cf, sim, spread, Ishift 
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numbers): 
3000,100,0.02,88 

32. SPEED (the power index for weighting the difference between actual and desired NN 
ootput).WSPEED (the power index for selecting event's weight variants):  
sss(jj)=sss(jj)+abs((o(jj)-b(its+ii)))**speed*u(ITS)**wspeed 
l.,l. 4 пт 

33. QUALITY FUNCTION SYMMETRIZATION WEIGHTS (WIGHT array):  
0.5,0.5 

34. SEARCH MODE (search = single - one dimensional search; MULLTI - all net parm. 
modificated simultaneously; neuron - all couplings and threshold of a randomly selected 
neuron) 
neuron 

35. QUALITY FUNCTION TYPE (qualit = montec - training with M.C.; sigmaa - with ON/OFF 
pairs; estima - neural estimation: 
montec 

36. QUALITY FUNCTION MODE, qtype = msd, (massa, kolm modes - now suspended)  
msd 

37. MEMORY TYPE (memory = simple - no memorization of better point during search; memory 
- the best changes are accumulated) 
memory 

38. BEGIN RANDOM SEARCH FROM (begin = random point; or - better point, found in 
previous search cycles): 
random 

39. STOP ITERATIONS IF QUALITY FUNCTION IS LESS THAN (stiter number):  
0.00001 

40. DECISION POINT (for 2 class case if qualit ne.montec): 
      else if (qualit.eq.'sigmaa'.or.qualit.eq.'spectr'.or.qualit.eq.'pure') then 

             if(o(1).le.dpoint) then… 
0.51 

41. number of different partitioning of last neuron output (0-1) interval (analog of a priory 
probabilities for the neural decision making) and list of partitioning and goal functions for all 
classes. 
nipr number and part and goal arrays):  
3 
0.5, 1  
0.1,0.9  
0.1,1.  

42. MULTIDIMENSIONAL "BINS" NUMBER FOR FEATURE SPACE SCANNING 
(revealing of multidimensional nonlinear cluster shape), ndel number: 
1000 

43. ESTIMATION MODE: NUMBER OF REGRESSANDS (ONE OR TWO) AND IT'S 
NAMES (ny number and numreg array): 
1 
MUON 
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* O p e r a t i o n  m o d e s  - The main and most important key word in ANI. Numerous operating modes 
are implemented in ANI program, to perform a different statistical procedures:  

• DIMDIM, DIMFLAT - intrinsic dimensionality analyses. 
• BHATА - Bhattacharyya distance calculation. 

• O N E - D I M E N  - tests for comparing single variables. 
• C O V C O R  - covariances analyses. 
• FWRITE -  data subsamples archiving. 

• O N E - L E A V E - O U T -  - Bayesian learning and Bayes error estimation. 
• C L A S S I F I C A T I O N  - Bayesian classification of experimental data. 

• B O O T S R A P  - Bootstrapization of Bayesian learning and classification, fraction 
reconstruction. 

• R E G R O ,  R E G R O - A D  - Nonparametric regression for energy estimation (KNN and 
Parzen types). 

• L E A R N I N G  - Neural network training for both, classification and estimation. 
• C L A S S I F I  - Neural classification and estimation of control events. 
• E X P  - Neural classification and estimation of experimental data. 

• FAST, SUPERCUT, SOBOL-CUT, MULTI-CUT -  for on-line analyses of atmospheric 
Cherenkov telescope data. 

• SAMEPT -  abandoned. 
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CHAPTER 3 
STATISTICAL INFERENCE IN COSMIC RAY 
PHYSICS 

NONPARAMETRIC INFERENCE 
The scientific method is characterized by data classification, the study of their interrelations 

and relations to past experience, accumulated in various theories and hypotheses. Usually, it is 
impossible either to prove or to refute hypotheses by deductive method. The challenge is to draw 
sensible conclusions from noisy, discrepant information. 

The main aspect of statistics is collection and interpretation of data, the interpretative aspect 
being the one that is now regarded as the essence of the subject [66]. The fundamental idea of 
statistics is that useful information can be obtained from individual small bits of data. An inductive 
method leads to empirical statements, that may be connected with theoretical ones by means of 
rational inductive conclusion rules [67]. 

The most natural and most general framework in which to formulate solutions to the physical 
inference in cosmic ray physics is a statistical one, which recognized the probability nature both 
of the physical processes of propagation of cosmic radiation through the atmosphere and the 
detectors, and - of the form in which data analysis results should be expressed. 

However, it is very important to provide the scientist with objective criterion by which to judge 
the claims of hypotheses (models) under investigation (problem solving strategy). By model we 
mean a complete probability statement of what currently supposed to be known a priori about the 
mode of generation of data and of uncertainty about the parameters [68]. 

If this statement consists in the existence of an analytic distribution family, (like Poisson or 
Gaussian), appropriate to the problem in hand, we have prescribed parametric model. For such 
parametric models a well-known concept of statistical inference consists in obtaining estimates of 
its parameters and verifying the validity of a chosen family [69]. 

3.2  PARAMETRIC  CLASSIFICATION 
The classification problem in parametric case (Newman-Pearson test) is traditionally de-

scribed in terms of null and alternative hypothesis, critical and acceptance regions and level of 
significance [70]. The "best" critical region (the region of rejection of null hypothesis) is 
constructed by means of a Likelihood Ratio(LR): 

𝐿𝑅(𝑣) = )(c/de)
)(c/df)

,        (3.1) 

each of two classes is defined by values of - the parameter of a prechosen analytic probability 
density function, vis a multivariate observation vector (point in multidimensional feature 
space)	𝑝(𝑣/𝜓<),(𝑣/𝜓h)- are conditional probability density functions describing distinct, 
mutually exclusive (non-overlapping) and full	𝑝(𝑣/𝜓<) + 𝑝(𝑣/𝜓h) = 1statements (null and 
alternate hypothesis). 

The threshold value reflects the costs of consequences of statistical decision. Usually one 
select this value to keep on some constant minimal level error for one class, while maintaining to 
minimize the error of the other class. 
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For the Кclass case the	𝑝(𝜓) -will be chosen as a "true" class 

𝜓 = 𝑎𝑟𝑔𝑚𝑎𝑥dk𝑝 l
c
dk
m , 𝑖 = 1, . . . 𝐾.														(3.2) 

If𝜓takes infinite number of values from some metric space Ψthen we deal with an estimation 
problem and the Maximal Likelihood Estimate (MLE) is assymptotically unbiased and effective 

𝜓q1# = 𝑎𝑟𝑔𝑚𝑎𝑥d ∑ 𝑙𝑛𝑓(𝑣t/𝜓),5
tu< 𝜓 ⊂ Ψ.          (3.3) 

where	{𝑣t}, 𝑖 = 1,𝑀are the experimental events. The parametric estimation uses whole 
experimental sample set, instead of only one event in the classification problem, with the benefit 
of solving regression problem (parameter estimation) for all possible experimental situations. The 
analytical function	𝑓(𝑣/𝜓q1#) ≡ 𝑓(𝑣) can be used for energy estimation, of course if the shape 
of particular functional family f (•) is known. 

Although the results of analysis using parametric statistics usually are easy to present and 
understandable, it is very important to remember that any inferential conclusion based on 
parametric technique are not exactly valid unless every assumption is satisfied. 

If these assumptions cannot be substantiated, or are discarded, or are not even known to the 
investigator, then the inference may be less reliable than a judicious opinion, or even arbitrary guess [4]. 

The parametric methods superimpose very restrictive assumptions on the nature of the 
population from which the sample is drawn. For example, the assumption of a normal distribution 
implies a continuous, symmetric, bell shaped distribution with infinite domain and a specific 
mathematical function. And statistical inference is exact for these sampling distributions only and 
may not even be close to the obtained one, if the population assumption comes to be incorrect. 

3.3 NONPARAMETRIC  CLASSIFICATION - MONTE  CARLO  
STATISTICAL  INFERENCE 
Usually, for experimental physics data analysis, the Likelihood Function cannot be written 

explicitly, and we deal with implicit, nonparametric models, for which no parametric form of 
underlying distribution is known, or can be assumed. 

Nonparametric methods use much less stringent assumptions about population than those 
made in parametric statistics. Usually the underlying population distribution is assumed to be 
continuous only. Of course, this assumption is rather mild comparing with the very specific 
assumptions made in parametric case. 

Let us consider the stochastic mechanism (𝒜,𝒱) which generates the observations 𝑣 in a 

multivariate feature space - 𝒱, 𝑣 is a d-dimensional vector of EAS parameters measured 
experimentally. We assume that observations are random and can be described by some 
conditional probability density function depending on the primary particle type. The feature space 
V covers possible acceptable values of EAS parameters including cuts on age and Ne parameter, 
etc... 

The basic states space 𝒜 consists of alternative models or classes (the alternative strong 
interaction models, or - different primary nuclei). The appropriate statistical model to describe this 
situation is the probability mixture model: 
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𝑝(𝑣) ={𝑃|𝑝 }
𝑣
𝒜|
~ .

�

|u<

																																				(3.4)  

 
And the main problem in EAS physics is to determine the proportions (frequencies) of events 

in each category 𝒜k. 
We don't know the full statistical description (conditional probability density functions 

𝑝(𝑣/𝒜k) of how nature produces EAS from incident particles, nor the possibility to use particle 
beams outside the atmosphere to calibrate the installations, that is why, to determine the mutual 
probability measure on the direct product of 𝒜 and  𝒱 spaces the total Monte - Carlo simulation 
of the EAS development in the atmosphere and in detectors is performed, including experimental 
data registration and handling for alternative primary particles and possible strong interaction 
models in a wide energy range. 

The set of d-dimensional 𝒰 vectors obtained in simulations is an analog of the experimentally 
measured values of	𝒱. But, as opposed to experimental data, it is known to which of the alternative 
classes each of these events belongs. These "labeled" events include a priori information about 
dynamics of the EAS development and registration, which is given in a nonparametric form, in 
form of simulation trials. 

The sequence {	𝒰i, tj},  where i  =  1,  Mj,   j = 1, L, t-is the class index, is generated by a detailed 
Monte Carlo simulation program like CORSIKA and consists of L classes each containing Mi, 
simulation trials. This "controlled" stochastic mechanism we denote by (𝒜,𝒫)and name training 
sample (TS). The training sample is the basis of all statistical procedures in applied Bayesian and 
neural approaches. The corresponding distribution mixture model takes the form: 

�̂�(𝑣) ={𝑃Z|�̂�(𝑣/𝒜|)
�

|u<

 

                                                                  (3.5) 
Of course, this substitution of unknown conditional densities 𝑝(𝑣/𝒜𝑘	)		by their " simulation" 

analog	�̂�(𝑣/𝒜𝑘) is only valid if used model is adequate. And validation of the model remains the 
most crucial and yet unsolved problem in EAS data analysis. 

Of course, for reliable estimation of conditional densities we'll need significant amount of 
training trials to cover all intrinsic variations of measurable EAS parameters and completely 
represent all categories (primary nuclei). 

Since both physical processes of particle production and those of registration are stochastic, 
only by careful measurement of probabilities we can gain an understanding of the EAS 
phenomena. We can't expect simple solutions, as multidimensional distributions of EAS pa-
rameters overlap significantly and any decision on primary particle type and its energy will contain 
uncertainty. 

The only thing we can require when classifying a distribution mixture is to minimize the losses 
due to incorrect classification to some degree and to ensure use of a priori information completely. 
Such a procedure is the Bayes decision rule with nonparametric estimation of the multivariate 
probability density function. 
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3.3.1 BAYESIAN  PARADIGMA 

The Bayesian approach of the statistical inference is a modification of the opinions of consis-
tent experts (a-priori knowledge) in the light of new evidence and the Bayes theorem specifies 
how such modification should be made. 

Moreover, as we believe, Bayesian a posteriori measures are only trustworthy and sensible 
measures of how the uncertainty about the phenomenon under investigation should be modified 
after new experimental data are achieved [3]. 

The Bayesian approach formalizes the account of all the losses connected with probable 
misclassification and utilizes all the differences of alternative classes [71]. The decision problem 
in a Bayesian approach is simply described in terms of the following probability measures defined 
on metric spaces: 

• The space of possible states of nature –  𝒜 ≡ (𝑝, 𝛼, 𝑂, 𝑁, 𝐹𝑒)-groups of primary nuclei; 

• The space of possible statistical decisions-𝒜� ≡ (𝑝�, 𝛼�, 𝑂�, 𝑁�, 𝐹�) where	𝑝� , . . . 𝐹�are the 
decisions that the examined event is caused by a primary proton, or.. . ,  iron nuclei; 

• Cost (loss) measure 𝑐YY�, or 𝑐YkY�or in simple notion 𝑐t�. This measure is defined on the 

direct product of nature states and decision spaces(𝒜 ⊗𝒜�). Losses, connected with 
definite statistical decision 𝒜� are equal to 

𝑐t ={𝑐t�,

�

�u<

𝑖, 𝑗 = 1, 𝐿 

        (3.6) 
At correct classification of primary particles into "proton" and "iron" classes the losses are 

equal to zero 

𝑐/#/�# = 𝑐))� = 0                 (3.7) 

or for problem of background rejection in TeV gamma-ray astronomy 
𝑐��� = 𝑐��� = 0               (3.8) 

If we misclassify the signal event, we decrease the efficiency of the 𝛾-event registration. If we 
attribute hadronic images to a 𝛾-ray one, we increase the background contamination. As we expect 
a significant excess of background against signal, we are interested in a strong background 
suppression. Thus, it is reasonable to admit the non-symmetric loss function for this case 

𝑐��� = 0.9, 𝑐��� = 0.1.																					(3.9) 

For elemental composition studies one can take uniform a priori losses function 

Cp = Cα= CO =CN = CFe = 0.2               (3.10) 

• Event (measurement, feature) space 𝒱- a set of measurable characteristics of EAS, 
Cherenkov image parameters etc. 

• The prior measure 𝑃Y ≡ �𝑃), 𝑃/# … �. 

• Conditional densities (Likelihood functions): 
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{�̂�(𝑣/𝑝), {�̂�(𝑣/𝛼), {�̂�(𝑣/𝑂), . . . }      (3.11) 

These density functions are estimated by means of training samples obtained in simulation 
trials with different primaries. 

Multivariate probability density estimation is a fundamental problem in data analysis, pattern 
recognition, and machine learning. The estimation of the conditional (on particle type) density on 
the basis of a collection of simulations is also a key problem in cosmic ray and high energy physics. 

3.3.2 BAYESIAN DECISION RULES 

The Nonparametric Bayesian decision rule takes the form 

𝒜� = 𝜂(𝑣,𝒜,𝒫�) = 𝑎𝑟𝑔𝑚𝑎𝑥t{𝐶t�̂�(𝒜t/𝑣)}, 𝑖 = 1, . . . , 𝐿                   (3.12) 

Where 𝑐t	is the losses connected with 𝒜� decision,	�̂�(𝒜t/𝑣) is the nonparametric estimates of the 
a posteriori density, connected with conditional ones by Bays theorem: 

𝑝�(𝒜𝑖/𝑣) =
�Zk)�(c/𝒜k)
)�(c)

																															(3.13) 

And finally, substituting a posteriori density by the conditional ones we get the Bayesian 
decision rule in the form 

𝒜� = 𝑎𝑟𝑔𝑚𝑎𝑥t{𝐶t𝑃t�̂�(𝑣/𝒜t)}, 𝑖 = 1, . . . , 𝐿																		(3.14) 
As one can easily see from above equation, the Bayesian statistical decision is dependent on 

multiplicator CiPi; therefore, we cannot separate the influence of losses (cost) measure and prior 
measure on the decision rule. Changes in losses can be compensated in changes in the prior to keep 
constant the Bayesian decision. We think, that it is reasonable to treat CjPj as single entity and 
denote it as a priori losses. 

The robust Bayesian inference claims that after considering repeated evidence, the initial used 
prior distribution can't influence a posteriori distribution heavily [3]. Thus, the choice of prior 
distribution isn't of critical importance for fraction estimation, because of the very big volumes of 
experimental data reshaping the initial prior knowledge. 

For the investigation of the influence of the a priori losses on the classification results, the 
statistical decision is made simultaneously for different alternative variants of a priori losses. 
Examining the, so-called, "influence curves" obtained with different losses, one can select the 
preferable regime of the estimator operation. For example, it is possible to select the desired ratio 
of background rejection and signal detection efficiency. 

In ANI package provision is made to avoid statistical decision if all classes are very far from 
experimental events (outliers’ problem). If: 

�̂�(𝑣/𝒜t) < 𝑆𝑇	for	all	𝑖 = 1, . . . 𝐾      (3.15) 
then the outliers report is sent to output stream. ST is, so called, Strangeness criteria, usually set to 
very small number. Conditional densities are estimated by the 𝑇𝑆(𝐴, 𝒫�)using one of many 
nonparametric methods available, L is the number of classes. 

The Nonparametric Likelihood Ratio for classes A1, A2 and experimental event v can be 
represented as 

𝐿𝑅(𝑣) = )�(c/𝒜e)
)�(c/𝒜f)

										(3.16) 
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Usually for comparison purposes we will use the sampling mean of Log Likelihood ratio. 
The nonparametric Log-likelihood function for the k-th class has the form: 

ℒ| ={ln�̂�(𝑣t/𝒜|),
5

tu<

						𝑘 = 1, 𝐿																																(3.17)								

 
where M is number of experimental events. The negative of Log Likelihood function is calculated 
in ANI, therefore the smaller values will correspond to most probable model. 

3.3.3 NONPARAMETRIC PROBABILITY DENSITY ESTIMATORS 

To estimate conditional densities, we used Parzen and KNN  methods [75, 77, 78, 79, 80, 81, 
82, 83, 84] with automatic “best” method parameter adaptation (kernel width - for Parzen, and 
number of nearest neighbors - for KNN) [85]. 

Several probability density estimates are calculated simultaneously. Then the obtain sequence 
is ordered and the median of this sequence is chosen as final estimate (so called L-estimate). 
Depending on the intrinsic probability density in the vicinity of point  𝑣 where the density is 
estimated, due to stabilizing properties of the median, each time the best estimate will be chosen 
[74]. The Parzen kernel probability density is estimated by: 

�̂� }
𝑣
𝒜t
~ =

|Σt|

2𝜋
§
fℎ+

{𝑒©
ª�
f

f«f𝜔�,			𝑖 = 1, … , 𝐿, {𝜔𝑗 = 1

𝑀𝑖

𝑗=1

5k

�u<

																		(3.18)				 

	
where d is the feature space dimensionality, Mi is the number of events in the i-th  TS, 𝜔� are the 
event weights, h is the kernel width (parameter controlling the degree of the "smoothness" of an 
estimate), rj is the distance from experimental event 𝑣 to the j -th  event of the TS in the 
Mahalanobis metric 

𝑟�h = (𝑣 − 𝑢�)H{ �𝑣 − 𝑢��
©<

t
																			(3.19) 

             
where 𝛴t is the sampling covariance matrix of the class to which uj, belongs. 

The KNN estimate (if the equal weights are assumed) takes the form: 

�̂�(𝑣/𝐴t) =
|©<

5k¯°(c)
                (3.20) 

where 𝑉|(𝑣) is the volume of a d-dimensional hypersphere containing K nearest neighbors to the 

experimental event 𝑣: 

𝑉|(𝑣) = 𝑉+|Σt|</h𝑟|+, 𝑉+ =
±§/f

²(³/h´<)
,                (3.21) 

where 𝑟| is the distance to the k-th nearest neighbor of  𝑣, Г(.) is the gamma function. |𝛴t| is the 
determinant of the covariance matrix of the class to which the K-th nearest neighbor belongs. 
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3.3.4 NONPARAMETRIC REGRESSION 
As well as for density estimation, described in previous section, we use the КNN and Parzen 

window for nonparametric regression. The choice of nonparametric methods for energy estimation 
is obvious: the a priori information about the shape of energy spectra in the "knee" region (ascribed 
both from measurements and existent models of particle generation and acceleration in interstellar 
media) predicts rather complicated character of spectra and change to different modes in various 
energy domains. Therefore, we couldn't expect that any parametric family with not very large 
number of parameters will describe the data satisfactory. 

So, also in the case of energy estimation, as for classification, the nonparametric methods only 
allow an event-by-event analysis of EAS data. 

The method is based on the fact that the events close to each other in feature space 𝑣 should 
have close to each other energies (geometric consistency hypothesis). The Parzen regression 
energy estimate takes form 

𝐸Z(𝑣�) = {𝐶t𝐸t																								 (3.22)

5µ¶

t

 

          
 

where 

𝐶t =
|·k|

h±§/f�§
𝑒©'k�

f/�f𝜔t.            (3.23) 

Here, rij is the distance from the observable vj  to the ui point of the TS, 	𝜔t is the training event 
weight. The Parzen estimate is calculated for different prechosen values of kernel widths h. The 
median of the estimates sequence is used as final estimate. 

The KNN regression (for equal weights) energy estimate takes slightly different form 

𝐸Z(𝑣�) ={𝐶t𝐸[t]																							 (3.24)

¸

t

 

                

{𝐶t = 1
5µ¶

t

																			      (3.25) 

where	𝐸[t]	stands for the sequence of energies of К nearest to vj neighbors of TS. Cj coefficientsare 
inverse proportional to distance (or square distance) between vj  and ui. 

The KNN  estimate is also calculated for different prechosen values of K. The median of the 
estimates sequence is used as final estimate. 

3.3.5 BAYES ERROR ESTIMATION 
The classification methods, like all the statistical ones, include a quality check as an absolutely 

necessary procedure. The proposed procedure can be used as well for the determination of the 
frequencies of the probability mixture (3.5). 

The most natural measure for quality check is the error probability (classification error) which 
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depends on both the degree of overlapping of alternative multivariate distributions and – on the 
decision rule being used (Bayes decision rules provides minimal error as compared to any other 
decision rule using the same features): 

𝑅¹ = 𝐸{𝜃[𝜂(𝑣, 𝒜, 𝒫)]}                       (3.26) 
where 

𝜃[𝜂(𝑣, 𝐴, 𝑃)] = »0, for	correct	classification1, otherwise 																					(3.27) 

The mathematical expectation is taken over the whole d dimensional feature space 𝒗. In other 
words, the Bayes error is a measure of the overlapping of alternative distributions in the feature 
space, e.g. the expected proportion of the "incorrect" classification. Since we do not know the 
analytical form of the distribution of measurements, we obtain an estimate of  𝑅Z¹ via the TS: 

𝑅Z# =
1
𝑀HI

{𝜃Ä𝜂�𝑢t, 𝒜, 𝑃��Å																																			(3.28) 												
5µ¶

tu<

 

 i.e. we classify the {ui}, i = 1, MTS, then check the correctness of the classification over the 
index of the class tj, j =1, L. The expectation is taken over all possible samples of volume 
MTS. 

However, as numerous investigations have shown (e.g. [72]), this estimate is systematically 
biased and hence, a one-leave-out-for-a-time estimate is preferable 

𝑅Z# =
1
𝑀HI

{𝜃Ä𝜂�𝑢t, 𝒜, 𝑃�(t)�Å
5µ¶

tu<

																													(3.29) 

where �𝒜, 𝑃�(t)�is a TS with a removed i-th element, which is classified and then "returned" to 
the sample. This estimate is unbiased and has an essentially smaller m.s. deviation compared 
with other estimators [73]. The advantage of 𝑅Z# is especially notable when the feature space has 
a high dimensionality. Note, that we have the possibility of repeated estimation of the error 
probability by classifying various TS classes - {ui ,tj}, j = 1,L. 

By 𝑅t�#  (or simply Rij) we denote the probability of classifying the i-th class events as belonging 
to the j-th class (misclassification). By Rii the "true" classification probability is denoted. For EAS 
classification according to 5 primary groups, each element of the “classification matrix” can be 
determined by the Bayes risk estimator (3.29): 

⎝

⎜⎜
⎛

𝑅)→) 𝑅)→Ê 𝑅)→, 𝑅)→Ët 𝑅)→Ì#
𝑅Ê→) 𝑅Ê→Ê 𝑅Ê→, 𝑅Ê→Ët 𝑅Ê→Ì#
𝑅,→) 𝑅,→Ê 𝑅,→, 𝑅,→Ët 𝑅,→Ì#
𝑅Ët→) 𝑅Ët→Ê 𝑅Ët→, 𝑅Ët→Ët 𝑅Ët→Ì#
𝑅Ì#→) 𝑅Ì#→Ê 𝑅Ì#→, 𝑅Ì#→Ët 𝑅Ì#→Ì#⎠

⎟⎟
⎞

 

 

This matrix accumulates a priori knowledge on the possibility of data classification into 5 
categories. If all diagonal elements are greater than 0.6 (and therefore - the sum of all non-diagonal 
elements in each line is less than 0.4), you can expect unambitious results of fraction estimation 
after reconstruction procedures explained in the next section. 
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The overall index reflecting the "goodness" G of features used for classification (index of 
separability) takes the form: 

𝐺 = ÑÒ𝑅tt

�

tu<

Ó

</�

 

                                                                                                              (3.30) 

This averaged product of diagonal elements represents the "mean" probability of true 
classification into one of L categories. This index, of course, is directly connected with Bayes 
error. 

3.3.6 FRACTION ESTIMATION 
Now let us estimate a posteriori fraction of various classes in the distribution mixture. 
The best estimate of a posterior fraction [8] (in case of a uniform a priori information and 

absence of systematic errors) is the empirical fraction 

𝑃t# =
5k
5ÔÕÔ

                            (3.31) 

where, 𝑀t is the number of events classified by the Bayesian decision rule (3.12) as belonging to 
the class 𝐴t,𝑀&Ö& is the total number of events. With account of classification the matrix of the 
classification errors, the corrected fraction (proportion) can be obtained as the solution of the 
following set of linear equations: 

{𝑃Z|𝑅|t = 𝑃t#,
�

|u<

		𝑖 = ,1, . . . 𝐿.									 

                                                                                                                   (3.32)                                 

where 𝑃Z| is the estimate of the proportions 𝑃| of the distribution mixture (3.4). 
The accuracy of the estimates is defined by the TS size and number of control data as well as 

by the value of the Bayes risk, which represents the "quality" of discrimination with the chosen 
feature subset (index of separability). Note, that the set (3.32) is a poorly defined system and at 
large values of classification errors the solution is unpredictable and hence, the choice of a feature 
combination providing a high percentage (≥ 60%) of correct classification is a necessary 
preliminary stage. 

For classification in two categories (for example "heavy" -Fe, and "light" - p nuclei) the system 
of two equations can be easily solved explicitly: 

𝑃/# =
�ØÙ
Ù ©ÚÛ,ØÙ

<©ÚÛ,ØÙ©ÚØÙ,Û
,				𝑃) = 1 − 𝑃/#										 (3.33) 

3.3.7 THE BOOTSTRAP PROCEDURE 

As we have shown in the previous section, to estimate the proportion of various nuclei in the 
primary flux, besides the classification of the experimental data by a TS, it is also necessary to 
calculate the misclassification rates Rij. The final accuracy of the obtained nuclear composition is 
a function of both accuracies of classification and the determination of Rij. 
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The possibility to decrease the bias and variance of the estimates of misclassification rates 
(3.32) was discussed in [28], where it was demonstrated that it is possible to improve the accuracy 
of the estimates, if the TS size is large, and, therefore we can obtain the estimate of (3.29), dividing 
the training sample to independent subsamples. Unfortunately, time consumption per model event 
generation increases abruptly with primary particle energy and the TS size is rather small for high 
energy events. Thus, the problem of an efficient use of the information contained in training 
samples is very important for cosmic ray physics, since samples corresponding to the highest 
energies are very limited. Of the greatest importance is also the estimation of the statistical errors 
of obtained fractions of different primary nuclei. We propose to use the advanced resampling 
methods for fraction error estimation. The resampling methods of statistical error estimation were 
widely used since the last two decades. An efficient procedure actively developed in both applied 
and theoretical aspects is the bootstrap method [87] which lies in replication of the initial sample 
many times by means of random sampling with replacement. Thus, obtained in such a way 
conditionally independent bootstrap-replicas stand for independent samples from the general 
population (under the condition of sufficiently large size of the initial sample) and can be used for 
statistical error estimation [88]. In fact, the bootstrap method substitutes the unknown general 
population by a single sample. The theoretical basis of the bootstrap method is the analog of the 
Central Limit Theorem (CLT) proved in [89]: 

𝑃{√𝐵(𝜇∗ − 𝜇5) < 𝑡𝑆5|𝑣<, . . . , 𝑣5} → 𝑁(𝑡),              (3.34) 

when  𝑀,𝐵 → ∞ and 𝑣<, . . . , 𝑣5 are independent, identically distributed (IID) random quantities, 
𝑁(𝑡) is a standard Gaussian distribution and 𝑡 is it's quantile, 𝜇5 and 𝑆5 are estimates of the first 
and the second statistical moments, 

𝜇∗ =
∑ 𝜇�0¹
�u<

𝐵 , 𝜇�0 =
∑ 𝑣t

(�)5
tu<

𝑀 													(3.35) 
                
𝜇�0 is the j - th bootstrap replica's mean, 𝜇∗ is the bootstrap first moment. Moreover, analogies 
between sampling and the bootstrap procedures are valid also for many other statistics. Referring 
to [90], we shortly summarize the main idea of the new method: a new procedure - the bootstrap-
moments (denoted by 𝜇∗ and 𝜎∗) are introduced, which in many cases substitute the statistical 
moments calculated according to a distribution function (in most cases of interest - unknown). Of 
course, the analytical calculation of the bootstrap moments is usually impossible. However, and 
here lies much of the strength of the bootstrap approach, these quantities may be computed, to any 
desired level of accuracy, by a Monte Carlo simulation [90]. 

Returning to the problem of distribution mixture coefficient estimation we consider two ways 
of the procedure bootstrapisation: 

• obtain the bootstrap estimate of the misclassification coefficients 𝑅∗t� and empirical ratio 
𝑃∗t# , 𝑖 = 1, 𝐿, then reconstruct the fraction according to (3.32). 

• carry out procedure of fraction estimation using each bootstrap replica, then obtain В 
bootstrap estimates of the fraction  𝑃Z∗t# , (𝑖 = 1, 𝐿, 𝑗 = 1, 𝐵). 

The second way is preferable, due to the possibility of explicit calculation of the systematic 
errors and, therefore - to evaluate the m.s.d. for the obtained fraction estimates. By several 
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bootstrap replicas we calculate the bootstrap expectation 𝑃Z∗ã    and bootstrap standard deviations 
of the mixture coefficients 𝑃Z, which will be used as final estimates of the fraction of different 
nuclei groups in the primary flux. 

3.4 THE NEURAL CLASSIFICATION TECHNIQUE 
The basic computing element in a multi layered Feed-Forward Neural Network (FFNN) is a 

node (formal neuron). A general i-th node receives signals from the outputs of the all neurons of 
the previous layer: 

𝐼𝑁t1´< = 𝑇t + { 𝑊t�
1

æçèéI(1)

�u<

× 𝑂𝑈𝑇�1, 𝑖 = 1,𝑁𝑂𝐷𝐸𝑆(𝑙 + 1), 𝑙 = 1, 𝐿 − 1. 

             (3.36) 

where the threshold 𝑇t, and connection strengths (weights) 𝑊t�
1  are parameters associated with the 

node i,l is the layer index, Lis the total number of layers, NODES (/) is the number of neurons in 
the l-th layer and 𝑂𝑈𝑇�1 - is the output of the j-th neuron in l-th layer. The index i  corresponds to 
the next to j layer. 

The output of the neuron is assumed to be a simple function of its input, usually it is formed 
by the, so called, nonlinear sigmoid function: 

𝑂𝑈𝑇t1 =
<

(<´#íîïk
ð
)
, 𝑖 = 1,𝑁𝑂𝐷𝐸𝑆(𝑙), 𝑙 = 2, 𝐿.                  (3.37) 

where 𝐼𝑁t1- is the input of the 𝑖-th neuron in the 𝑙-th layer. 
Thus, feature, entering the first layer are translated from input through hidden layers to the 

output nodes. Therefore, FFNN provides the mapping of N-dimensional feature space  to the space 
of the lower dimensionality, in ideal case into class assignments. For classification purposes this 
mapping takes a special form with aim to "shift" different classes of TS from each other as much 
as possible. Therefore the "goal" output  𝑂𝑈𝑇-Öñ1(𝑘) for events of the k-th category could be 
chosen as follows: 

𝑂𝑈𝑇-Öñ1(𝑘) = |©<
¸©<

, 𝑘 = 1, 𝐾.														(3.38) 

where K is total number of classes. Of course, it is possible to define another set of "goal" value. 
In the case of two classes, i.e. signal and background events, the "goal" outputs, as one can 

easily see, are equal to zero and one. The actual events classification is performed by comparing 
the obtained output value with the "goal" one. We expect, that the data flow passing through the 
trained net will be divided in two clusters concentrated in the opposite regions of the (0, 1) interval. 
Choosing an appropriate point in this interval (the so-called decision point c), the classification 
procedure can be defined: an event with an output greater or equal than the decision point is 
attributed to the background class, while all the other events - to the signal class: 

𝑂𝑈𝑇(𝑣) = »< 𝑐, 𝑣	is	classified	as	signal
≥ 𝑐, 𝑣	is	classified	as	background                             (3.39) 

where OUT(𝑣) is the output node response to a particular experimental measurement v. This 
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decision rule is a Bayesian decision rule; therefore, the output signal of a properly trained feed 
forward neural network is an estimate of the a posteriori probability density [91]. 

For the multi-way classification one can define a set of not overlapping intervals in (0 — 1). 
This set, along with the chosen "goal" values, will determine the mapping of net output into class 
labels. The figure of merit to be minimized is simply the discrepancy of apparent and target outputs 
over all training samples (so called classification score): 

𝑄 ={{(𝑂𝑈𝑇(𝑘) − 𝑂𝑈𝑇-Öñ1(𝑘))h
5°

�u<

¸

|u<

 

                                                                                           (3.40) 
where 𝑂𝑈𝑇�(𝑘) is the actual output value for the j-th training event, belonging to the k-  th class, 
and the 𝑂𝑈𝑇-Öñ1(𝑘) is the target value for the k-th class output, where K is number of categories 
and M k  is number of events in the k-th training set. 

In many cases of interest, it is preferable (and possible) not to use the simulations at all. If the 
calibration of experiment with background cosmic radiation, as in case of atmospheric Cherenkov 
telescopes is available, a new model-independent quality function can be determined. Searches for 
discrete very high-energy gamma-ray sources consisted in the detection of an abundance (𝑁Ö. −
𝑁ÖÌÌ) of events coming from the direction of a possible source(𝑁Ö.) as compared with the control 
measurement, when pure background is registered(𝑁ÖÌÌ).  As the expected fluxes are rather weak 
and background is abundant (the signal to background ratio not exceeding 0.01 and usually is much 
smaller), one should always answer the following question: is the detected abundance a real signal 
or only a background fluctuation? The measure of statistical significance used in gamma-ray 
astronomy is some empirical analog of the P-value of the Student statistical test [92]: 

𝜎 = æÕø©æÕùù
úæÕø´æÕùù		

																(3.41) 

The larger 𝜎, the smaller the probability that the detected excess is due to background 
fluctuation. The telescope design and the development of new data handling methods have the 
purpose to enlarge the value of 𝜎. After introducing some “cut” in the image parameter space and 

selection of the "gamma-like" events from raw data (both from the ON and OFF samples), the 𝜎 
criteria value can significantly enlarge: 

𝜎û2& =
æÕø∗ ©æÕùù

∗

üæÕø∗ ´æÕùù
∗

                      (3.42) 

where 𝑁Ö.∗ , 𝑁ÖÌÌ∗  are the numbers of events "surviving the cut. After executing all ONN, OFF 
samples, the 𝜎	value is calculated each time by means of "survived" (classified) events. 

3.4.1 NEURAL  ESTIMATION 
The same FFNN with different quality function is used for primary energy estimation. The 

following ”quality” function have to be minimized 
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𝑄 ={𝜔�

5

�u<

�𝑂𝑈𝑇(𝑢�) − 𝑂𝑈𝑇&'2#(𝑢�)�
h, 

                                                                                                                         (3.43) 

where, 𝑂𝑈𝑇(𝑢�) is the output of the FFNN last layer and the 𝑂𝑈𝑇&'2#(𝑢�) is the parameters used 
in simulation (energy of cosmic ray nuclei or very high-energy gamma ray), 𝜔�is the event weight 
(usually the highest energy events get higher weight). 

3.4.2 FF NEURAL  NETWORK  TRAINING 

Two main scenarios of net training are implemented in ANI. 
• The deterministic mode: the multidimensional quasi-random sieves are used for scanning 

of the net parameter space. Positioning the sieve center at the previously found best point, 
and subsequently decreasing sieve size, we'll arrive to the best NN parameters. 

• The random search algorithm uses pseudo-random numbers to select the particular net node 
and randomly change all its weights. If new weights bring an improvement of quality 
function, then this change survives, and a new random search step is performed, in opposite 
case the changes are subtracted and another random step is made from the previous point. 

The total number of searching NN parameters equals: 

𝑁𝑇𝑂𝑇 ={𝑁𝑂𝐷𝐸𝑆(1) +
�

1uh

{𝑁𝑂𝐷𝐸𝑆(𝑙)𝑁𝑂𝐷𝐸𝑆(𝑙 + 1)
�©<

1u<

.															(3.45) 

The random change (addition, or subtraction) Δt, is selected on the i—th iteration of search 
procedure in the following way 

Δt = 𝑆𝑇𝐸𝑃𝑓(𝑄t©<)(𝑅𝑁𝐷𝑀 − 0.5)														(3.46) 

where RNDM - is randomly distributed in the (0 - 1) interval, 𝑓(𝑄t©<) is the power function, 
controlling the random step size during reaching the global minimum and STEP is normalizing factor. 

Also, complementary search modes can be used: 
• Single mode (one of NTOT) - single parameter is randomly chosen and randomly changed; 

• Multi-mode - all net parameters simultaneously are randomly changed. 
It is possible to combine different search modes. Each will start from the best point reached in 

a previous search. Changing modes and search parameters helps to escape the local minima region 
and finally obtain desired solution. 

3.4.3 GENETIC  ALGORITHMS 

As was described in the previous section, the NN training (search of the best parameters) is a 
very time-consuming procedure with no guarantee to find the unique best point in multidi-
mensional (dimensionality may be 100 and more) NN parameters space. 

To fasten this process, the genetic approach is proposed. Starting from a "pool" of "good" 
solutions, obtained with different searching scenarios starting from different initial points we 
determine the "genetic" operations on it. 
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Each solution is represented by a "chromosome" - collection of gene (each gene consists of a 
single neuron parameters). The main genetic operations are "crossing-over" - exchange of  
randomly chosen neurons in randomly chosen chromosome, and mutation - rare process of the 
random changing the single " allele". 

Then the evolution started (of course the rules of forming of the next generations have to be 
defined) and "fitness survival" mechanism is triggered. 

We'll demonstrate in the ANI testing chapter, that some of "offsprings" demonstrate better 
characteristics than "parents". 

The genetic module is a separate program written in Сfor UNIX by S.Chilingarian. 

3.4.4 NET TOPOLOGY 

As for many other nonparametric techniques, for FFNN training it is very difficult to find an 
appropriate method for net parameter determination (e.g. the number of nodes and layers).  Of 
course, one can form the initial "pool" from networks with different topologies, and leave evolving 
population to find the best one. But this approach seems to be too complicate, due to numerous 
variants and possibilities. 

Instead, the "Occam" principle is used. Start from minimal configuration (single hidden layer 
with 3-5 neurons); then increase NN step-by-step; check for improvement and stop when no more 
improvement take place. 

It is worth to mention, that one cannot use very complicated nets, if training samples are 
limited in size. The empirical rule requires as minimum 10 training events for each net parameter. 
Therefore, you can't use more than the simplest net (4::3::1) if your training sample consists of 
100 events and you try to make 3-way classification of 4-dimension EAS parameters. 

3.4.5 STOPPING  RULES 

Usually, the net training iterations canceled when the value of quality function is stabilized, 
and no more improvement takes place. Or, when the requested maximal number of iterations has 
been reached. Then the obtained set of net parameters can be used for experimental data 
classification. 

But, there always is the danger of "overtraining" (especially for small training sets). The 
obtained network will very good describe the particular training set, but not the required overall 
dependence. So, the "training" error could be minimized, but the "generalization" error, obtained 
with the same net, but with an independent sample can give a rise of classification errors. 
Therefore, in each step of training it is important to check the results with an independent sample 
and stop training when the "generalization" error starts to increase. 

3.5 KNN ALGORITHM OF  FRACTAL  DIMENSION  ESTIMATION 

The basic approach to dimensionality analysis lies in characterizing physical systems by the 
singularities of the invariant probability measure [93]. To do this, let us determine the scaling of 
moments of the random quantity pi(l) of order q at scale l: 

𝐶þ(𝑙) ≡< 𝑝t(𝑙)þ >≡ {𝑝t(𝑙)þ´<
æ(1)

tu<

~𝑙"(þ),𝜙(𝑞) = 𝑞𝑑þ©<							         (3.47)	 

       where dq are the Renyi dimensions (generalized dimensions) determined for −∞ < 𝑞 < ∞.                  
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If q=-1, the relation (3.47) determines the capacity dimension dF= d0, if q= 0 - the information 
dimensionality d1, and if q=1 the correlation dimension d2. The estimates of the Renyi dimensions 
are defined as a slope connecting some values of {𝑙t} with the corresponding values of  {𝐶þ(𝑙t)  in 
a double-logarithmic scale. While the formal definition of the generalized dimension is given in 
the limits of very small scales and infinite population, in practical applications only a limited 
number of events is accessible, so only a finite scale can be considered. In fact, if we cover the 
distribution with boxes that are too small, most of them will contain just one particle or nothing at 
all. Therefore, for the direct Renyi dimension calculation there are no instructions regarding the 
choice of the box-size{𝑙t}. Algorithms based on nearest neighbor information (KNN-algorithms) 
are much more efficient than the box- counting algorithms and they introduce a natural scale - the 
sample-averaged distance to NN: 

𝑅&|, 𝑘 = 1,2, . . . 𝑀 − 1																(3.48) 

where M is the total number of events in the sample. Using the ergodic theorem one can make a 
replacement [94, 95]: 

{𝑝t(𝑙)þ´<
æ(1)

tu<

~{𝑝��(𝑙)þ
5

�u<

≃ 𝑄<		         (3.49)				 

where  𝑝�� is the probability to find the point of the studied set not in the box of size l, but inside 
the hypersphere of radius l, centered at some other point of the studied set and 𝑄<is the total number 
of q-tuples within this sphere. For the 𝑅&|sequence, the scaling relation takes the form: 

𝑄Ú&°~𝑅&|
"(þ)

                           (3.50) 

For q = 1(correlation dimension) the number of q-tuples is simply equal to the number of the 
sample events within /-spheres, and the left-hand side of (3.50) is equivalent to the mean number 
of the sample points inside a hyper-sphere with radius equal to the average distance to the K-th 
neighbor, i.e. is equal to the number k, so: 

𝑘~𝑅&|
+f                (3.51) 

Hence, the modified algorithm defines d2 as a slope of the k-dependence of Rk in a double- 
logarithmic scale. Note that the obtained dimensionality is not in any way connected with the 
regions where singularities of the probability measure arise, i.e. it is impossible to recover the 
spatial structure of the multi-fractal support by the dq spectrum. That is why we believe that the 
local dimensionality may be useful in separating the space regions where considerable fluctuations 
of the invariant probability measure are observed. Apart from sample averaging, there is also one 
more way to get a linear equation for dimensionality determination [96]. We can determine the 
same procedure as described above not for the sample averaged distances, but for the actual 
distances to the nearest neighbors of each point in the sample. For this, one must choose the series 
{𝑘�} such, that the density estimates are very close to each other and hence, the dependence of  
�̂�|(𝑣) on k can be ignored. Using chosen in such way  {𝑅&&&|�(𝑣t)}	  values and corresponding {𝑘�} 
values, one can estimate the local dimensionality at a point 𝑣t. The mode of the histogram of the 
local dimensionalities usually approaches the global one, and local inhomogeneities of the sample 
can also be readily seen from the histogram as several local pikes.  
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CHAPTER 4 
ANI TESTING (GAUSSIAN DATA) 

4.1 BAYESIAN ANALYSIS  

4.1.1 PROBABILITY DENSITY ESTIMATES 

To check the ANI density estimation modes, we use samples from multivariate Gaussian 
populations with different means (0 - for the first class and 1 - for the second) and equal variances 
(1 for both classes). We compare the theoretical value of the Bayes error, which for Gaussian 
distributions is directly related to the Mahalonobis distance (3.19) between first statistical 
moments of two classes: 

𝑅¹ = Φ l− ')*«
h
m														(4.1) 

where Ф is the cumulative standard Gaussian distribution function. For univariate Gaussian 
population many theoretical results exist on the closeness of estimated and true probability density 
function ([76]). The two main measures used to describe this closeness are the L 1  and -L2 (the 
integrated mean square error) metrics. 

𝐿< = ∫𝐸(|�̂� 	q	 (𝑣) − 𝑝(𝑣)|)𝑑𝑣                   (4.2) 

𝐿h = ∫𝐸((�̂� 	q	 (𝑣) − 𝑝(𝑣))h)𝑑𝑣                      (4.3) 

where  �̂� 	q	  is the nonparametric density estimate obtain by implementing one of nonparametric 
density estimators (3.18) with a sample consisting of m events. From the figure (4.1) one can see 
the probability density curves corresponding to the different smoothing parameters of the Parzen 
estimator overlaid onto the standard Gaussian density ([86]). For the small kernel width h = 0.1 
the estimated is discreet, for the width - h = 0.7 — oversmoothed.  There is a number of notions for 
"optimal" kernel width ([76]), for samples from Gaussian populations, for example 

ℎ = 1.66𝑀©</=                  (4.4) 

This equation is valid only if Mahalonobis metric is used. As one can easily calculate, the 
optimal kernel width increases from 0.41 for sample size M= 1000, to - 0.67 for sample size 
M=100. For multivariate Gaussian distributions, of course, one has to have taken larger values. 

The "optimal kernel" and adaptive estimates (L-estimate) show better approximation, 
compared with estimates with fixed parameters. Note, that the L-estimate didn't use very specific 
a priory information on distribution function shape, as an "optimal kernel" estimate, therefore, it 
is robust and can be used for samples taken from distributions, which analytic shape is unknown 
(common case in analysis of big data). The sequence of fixed kernels, used for constructed of L-
estimate, should cover some wide interval depending, of course, on the available sample size. 

To check the density estimator, we calculate the probability integral for several independent 
samples from standard Gaussian population: 

∫ �̂�(𝑣)𝑑𝑣                    (4.5) 
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Figure 4.1: Parzen density estimates of standard normal distribution 

As one can see from the figure 4.2, the distribution of probability integrals is rather smooth 
approaching 1 from the left (the bottom Darbu sum), and ensuring correct normalization of the 
estimated densities (3.18). 

The results of the adaptive estimator are summaries in Table 4.1. The densities were estimated 
in 51 points uniformly distributed in (-5+5) interval. The L1 and L2 measures were calculated for 
samples from standard Gaussian population. The Bayes risk estimates were done for samples from 
standard Gaussian and Gaussian with mean 1 and variance 1, according to (3.29). The probability 
densities were calculated simultaneously for 7 kernel widths (from 0.2 to 0,8). Corresponding 
Bayes errors and L1, L2 measures as well as first and second statistical moments, were calculated 
for each from 1000 trials of independent samples of size 10, 25,100; 100 trials for - 400; and 10 
trials for - 1000. Rather well agreement with other estimators reported in ([82, 15]), demonstrates 
the consistence and unbiasedness of density estimators used in ANI. 
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Figure 4.2: The histogram of "probability integrals" 
 
Table 4.1: The quality check of the Parzen density estimator, samples from Gaussian populations 
N(0,1)-N(1,1), adaptive estimator 
MxB mean variance Re L1 L2 

10 X 1000  0.002  
-0.050  
-0.004  

0.996 
0.978 
0.998 

1.437  
1.340  
1.400  

1.463 
1.330 
1.430 

0.332±0.210 
0.325±0.190 
0.332±0.200 

0.345±0.150 
0.340±0.140 
0.340±0.140 

0.0310±0.024 
0.0310±0.024 
0.0300±0.023 

25 X 1000 -0.008  
-0.033  
-0.005  

0.995 
0.978 
0.990 

1.144  
1.080  
1.140  

1.139 
1.080 
1.140 

0.317±0.140  
0.320±0.140 
0.317±0.145 

0.240±0.100 
0.250±0.100  
0.240±0.100 

0.0154±0.013 
0.0166±0.012 
0.0155±0.012 

100 X 1000 -0.002  
-0.003  
-0.006  

0.994 
0.966 
0.948 

1.031  
0.980  
1.030  

1.033 
0.980 
1.030 

0.317±0.074 
0.314±0.080 
0.312±0.071 

0.141±0.050 
0.153±0.048 
0.141±0.050 

0.0058±0.0041 
0.0065±0.0042 
0.0057±0.0040 

400 X 100 -0.004  
-0.030  
-0.000  

1.000 
0.965 
0.990 

1.010  
0.960  
1.000  

1.001 
0.960 
1.010 

0.308±0.060 
0.310±0.050 
0.310±0.055 

0.083±0.024 
0.097±0.028  
0.089±0.032 

0.0021±0.0013 
0.0026 ±0.0014 
0.0023 ±0.0015 

1000 X 10 -0.001  
-0.035  
-0.004  

0.996 
0.959 
0.998 

1.001  
0.950  
0.990  

0.992 
0.950 
1.000 

0.310±0.100 
0.310±0.100 
0.310±0.100 

0.062±0.028 
0.077±0.033 
0.064±0.025 

0.0012±0.0008 
0.0016±0.0010 
0.0011 ± 0.0005 

 
 

4.1.2 THE BOOTSTRAP STATISTICAL MOMENTS 

To check the validity of bootstrap approach we test the biasness of bootstrap moments using 
samples from the standard distribution N(0,1); the sample size varied from 25 to 1000, the number 
of bootstrap replicas in a series was from 10 to 1000. The mean was calculated for each bootstrap 
replica according to (3.35), and for each bootstrap series - the bootstrap estimate of the mean 𝜇∗and 
- mean standard deviation - 𝛿∗ = 𝜎∗/𝑀,  was evaluated. The results of calculations, which present 
in table 4.2, illustrate the validity of "butstrap" CLT (3.34) and consistency of using of the 
bootstrap moments. Although the mathematical theorems were proved for the asymptotic 
cases	𝑀, 𝐵 → ∞ even with small sample sizes and rather small numbers of bootstrap 
replicas(𝑀, 𝐵 = 50), the obtained bootstrap estimates coincide with sampling statistical moments 
with high precision. Of course, enlarging of sample size and bootstrap replicas number improves 
the accuracy significantly. 
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4.1.3 DISTRIBUTION MIXTURE SHARE ESTIMATION 

The bootstrap fraction estimator (see section 3.3.7) was checked by a pilot Monte Carlo study 
of 2-way classification with samples from Gaussian population N(0,1) and N(l, 1). For comparing 
the "bootstrap errors" of "reconstructed" proportion with expected from usual sampling procedures 
we make aN "experimental" sample with mixture from both samples in 0.2-0.8 proportion. The 
empirical fraction estimate 𝑃<# and the error matrix	𝑅#were calculated using the Bayesian non-
para- metric procedures (3.31 and 3.29). Then the "true" fraction 𝑃Z< was calculated according to 
(3.32 and 3.33). 

The sample averaged values of all 3 estimates was obtained with independent random samples 
from the same Gaussian populations. They are denoted in the table by brackets <>. The bootstrap 
estimates are denoted by * symbol. The examples of particular run are presented in ANI outputs 
section (5.3). In table 4.3, 100 events were used for training and 1000 for classification, 10 
bootstrap samples was simulated. The dimensionality was varied from 1 to 4. 

Table 4.4 represents results for 1000 event training and the same 1000 for classification and 
10 bootstrap replicas. The last table 4.5 represents 2 big bootstrap trials 1000 for 100 training and 
100 for 1000. Only dimensionality 4 was used. As it is seen from the tables, especially for the large 
samples and bootstrap replicas number, the bootstrap fraction estimates along with m.s.d. estimates 
are in consistence with sampling estimates. 
Table 4.2: Bootstrap expectations and bootstrap standard deviations of sampling statistics 
 В 10 50 100 200 

 
 M=25  
  

 

-0.0152 
0.0639 
0.1891 
0.0560 

0.0031 
0.0251 
0.1974 
0. 0.0227 

-0.0048 
0.0174 
0.1929 
0.0031 

-0.0003 
0.0160 
0.1977 
0.0028 

 
 M=50 
  

 

-0.0024 
0.0402 
0.1481 
0.0286 

-0.0023 
0.0227 
0.1398 
0.0182 

0.0003 
0.0149 
0.1396 
0.0167 

-0.0001 
0.0097 
0.1395 
0.0154 

 
 M=100 
  

 

-0.0171 
0.0323 
0.0897 
0.0212 

-0.0010 
0.0152 
0.0959 
0.0107 

-0.0004 
0.0101 
0.1000 
0.0097 

-0.0008 
0.0066 
0.0988 
0.0086 

 
 M=200 
  

 

0.0038 
0.0231 
0.0593 
0.0154 

-0.0017 
0.0107 
0.0692 
0.0078 

0.0001 
0.0082 
0.0694 
0.0063 

0.0000 
0.0048 
0.0700 
0.0049 

25 0.2d =

{ }
{ }
{ }
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M
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d
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s d
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-
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*

*

*

-
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 M=500 
  

 

-0.0018 
0.0115 
0.0430 
0.0095 

0.0007 
0.0072 
0.0452 
0.0043 

0.0004 
0.0040 
0.0442 
0.0033 

0.0003 
0.0032 
0.0446 
0.0024 

 
 M=1000 
  

 

0.0038 
0.0079 
0.0322 
0.0073 

0.0001 
0.0050 
0.0317 
0.0033 

0.0002 
0.0030 
0.0316 
0.0022 

0.0003 
0.0022 
0.0315 
0.0017 

 

Table 4.3: Fraction estimation, M=100; B=10 

N 1 2 3 4 

 0.309 0.240 0.193 0.159 

Index 0.632 0.719 0.788 0.825 

 0.285 0.280 0.205 0.165 

 0.367 0.338 0.297 0.285 

 0.162 0.183 0.206 0.219 

 0.295 ± 0.094 0.264 ± 0.075 0.221 ± 0.045 0.173 ± 0.072 

 0.394 ± 0.096 0.340 ± 0.045 0.277 ±0.041 0.270 ± 0.038 

 0.132 ±0.165 0.193 ±0.078 0.263 ±0.022 0.203 ± 0.039 

 0.325 ± 0.098 0.252 ± 0.082 0.221 ± 0.082 0.177 ±0.029 

 0.355 ±0.103 0.393 ± 0.077 0.324 ± 0.057 0.311 ±0.039 

 0.184 ±0.075 0.156 ±0.087 0.220 ±0.033 0.173 ± 0.063 

Table 4.4: Fraction estimation, M=1000; B=10 

N 1 2 3 4 

 0.309 0.240 0.193 0.159 

Index 0.700 0.767 0.813 0.839 

 0.300 0.233 0.187 0.159 

 0.367 0.338 0.297 0.285 

 0.162 0.183 0.206 0.219 

500 0.0447d =

{ }
{ }
{ }
{ }

M

M

E

E

µ µ

s µ µ

d

s d
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-
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 0.300 ± 0.044 0.231 ± 0.029 0.187 ±0.029 0.159 ±0.023 

 0.376 ± 0.043 0.348 ± 0.018 0.301 ± 0.020 0.291 ±0.018 

 0.163 ±0.029 0.189 ±0.020 0.205 ±0.014 0.217 ±0.008 

 0.310 ±0.029 0.250 ±0.019 0.200 ±0.025 0.164 ±0.018 

 0.405 ± 0.030 0.342 ± 0.025 0.329 ±0.024 0.309 ± 0.020 

 0.194 ±0.040 0.191 ±0.040 0.186 ±0.035 0.199 ±0.019 

Table 4.5: Fraction estimation, N=4, B=1000; B=10 

N=4 100x1000 1000x100 

 0.159 0.159 

Index 0.825 0.839 

 0.260 0.285 

 0.156 0.219 

 0.165 0.159 

 0.171 ±0.073 0.160 ±0.019 

 0.270 ±0.042 0.287±0.015 

 0.205 ±0.051 0.215 ±0.012 

 0.170 ±0.062 0.165 ±0.021 

 0.312 ± 0.052 0.304 ± 0.020 

 0.208 ± 0.051 0.202 ± 0.023 

4.1.4 BAYESIAN MAPPING 

Bayesian decision rule (3.12) is defined in each point of feature space 𝒱 and for each point the 
definite decision is made (of course each point 𝜐 ⊂ 𝒱 have to have the "physical" meaning, visa-
versa the outliers selection rule (3.15) will be triggered). 𝜐 points attributed for one and the same 
category usually form, so called, "clusters" - compact regions in 𝒱. The shape of this regions can be 
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highly nonlinear and ever disconnected. On the figure 4.3 we can see distinct clusters corresponding 
to samples from 2-climensional Gaussian population with means 1, 5, 7. Variances of all classes are 
equal to 1, 1000 events for each class were used. As the sample means are rather far from each 
other, the clusters get definite shape containing events from particular class, simultaneously 
rejecting events from the other classes. The aspheric shape of clusters is explained by the 
aspherical symmetry of 2-dimensional uncorrelated Gaussian population, the middle class 
variables are correlated, and therefore second cluster points (superimposed on the figure) had an 
elliptic shape.On the figure 4.4 the clusters corresponding to the two samples from the one and 
the same Gaussian population are presented. Very complicated form of cluster is explained by 
the sampling random fluctuation. 

 
Figure 4.3 The Bayesian clusters for the samples from Gaussian populations with different means 

 

Figure 4.4 The Bayesian clusters for the samples from Gaussian populations with same means 
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4.2 ARTIFICIAL NEURAL NETWORKS MODELS 
4.2.1 NEURAL CLUSTERS 

We use the 2:4:2:1 feedforword network for detecting the 2-climensional clusters with radial 
symmetry. Training samples consists of two classes of 450 uniform distributed "background" 
events. The 50 "signal "events generated according to 2-climensional radial symmetric Gaussian 
population with mean - 0.5 and 𝜎- 0.03 were added to one of background samples. 

The goal of algorithm is to find a 2-climensional cluster maximizing the objective function 
(3.41), e.g. containing as much as possible "signal" events, and rejecting the background events. 

Figure (4.5) preents the results of Sobol sieves search strategy (see section 3.4.2). A is size of 
pseudo-random sieve. 

After obtaining several trained networks, the obtain "chromosome" where used as a "pool" for 
genetic algorithm. The "fittest descent" strategy after several generations of offsprings, as one can 
see from figure 4.6 improves situation. Both "mutations" and "crossovers" increase 𝜎 values. 

4.2.2 DETECTION OF THE CRAB NEBULAE BY THE WIPPLE COLLABORATION  

The best discrimination technique used in the WHIPPLE Observatory is the multidimensional 
cuts (supercuts) method proposed in ([37]) and then improved in ([30]) (four Cherenkov image 
parameters were used). The method consists of a posterior selection of the best gamma-cluster 
(multidimensional box), containing "gamma-like" events. The particular coordinates of the box 
were selected to maximize the s value on the 1988-1989 Crab nebula observation data base (65 
ON, OFF pairs ~ 106 events) ([29]). By implementing the supercuts method, the initial s value 
was enlarged from 5(raw data) to 34. The parameters of the Cherenkov image, used for background 
rejection reflect the inherent differences in angular size and shape from two types of images 
(WIDTH, LENGTH) and differences in the image orientation (MISS, ALPHA), AS WELL AS 
the estimate of impact parameter of particle – DIST; the dispersion parameter (CONG) of the 
images have also been used. A single parameter can be defined which combines the shape and 
orientation criterion - AZWIDTH. 

We use a simple 4::5::1 neural net to select the better nonlinear shape of the gamma- cluster. 
The net was trained on experimental ON&OFF events. For Neural analysis were used the same 
variables as for Supercut analysis: WIDTH, LENGTH, DIST, ALPHA. The comparison of different 
background suppression methods one can see in the table 4.6.  DIFF = 𝑁Ö.∗ − 𝑁ÖÌÌ∗  is the estimate of 

the signal, DIFF/𝑁ÖÌÌ∗ - is the estimate of the signal to noise ratio,
æÕùù
∗

æÕø∗
- is the estimate of background 

suppression by used technique. 

Table 4.6: WHIPPLE Crab detection, 1988-1989 

 𝑁Ö.∗  𝑁ÖÌÌ∗  𝜎 DIFF 	DIFF/𝑁ÖÌÌ∗  
𝑁ÖÌÌ∗

𝑁Ö.∗
 

Raw 506255 501408 4.8 4847 0.01  
AZWIDTH 14622 11389 20.4 3233 0.28 0.0227 

WEDGE cut ([37]) 6017 3381 27.2 2636 0.78 0.0067 
SUPERCUT ([30]) 4452 1766 34.3 2686 X .52 0.0035 
NEURAL 4::5::1 6278 2858 35.8 3420 1.20 0.0057 

The neural nonlinear cluster is much less restrictive than supercut and AZWIDTH cuts. More 
"intelligent", smooth nonlinear shape of the   𝛾-cluster ensures the significant enhancement of the 
signal detection efficiency along with higher rejection of the background. 
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Figure 4.5: Deterministic Search 

 
Figure 4.6: Genetic Search  
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CHAPTER 5 
PRIMARY NUCLEI CLASSIFICATION IN 3 CATEGORIES 
(KASCADE DATA ANALYSIS) 

5.1 THE EXTESIVE AIR SHOWER (EAS) SIMULATION  
All statistical decisions and procedures are correct within the prechosen model. Thus, a realis-

tic simulation is the key problem of any physical inference in indirect experiments. Research of 
Extensive air showers is a classic example of such a situation. Sure, adequate consideration of 
detector response and an identical reconstruction of experimental and simulated data are necessary 
steps of data analysis. 

 
Figure 5.1: Features distribution for proton and iron 

The first simulation data base of the KASCADE experiment fulfilling the above requirements 
is available since recently, and we use specific EAS parameters, like the numbers of 
electrons/photons	(𝑁𝑒) and truncated number of muons	(𝑁𝜇𝑡𝑟)and the age	(𝑁30) parameters as 
input for data analysis. The physical meaning of these variables will not be discussed; we only 
mention that the procedures of their treating are identical for experimental data and simulations. It 
is also very important to say that hypotheses about lateral distributions of muons and electrons at 
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very small and large distances are not of influence. The simulations of the EAS development in 
the atmosphere was done with the (CORSIKAcode (version5.2: VENUS and QGS models). For 
the calculation of the full detector response function the GEANT CERN package was used. The 
parameters of simulated showers were reconstructed with the same programs as experimental ones. 

The measured EAS parameters by KASCADE detector are presented in Tab. 5.1 and Fig. 5.1. 
As one can see from the figure the overlapping of shower parameters corresponding ever to most 
distinct proton and iron classes is rather large and one can't expect reliable classification of 
primaries according to the single EAS features. 

In the multidimensional features space, as one can see from Fig. 5.2 the differences between 
proton and iron samples is much larger. Therefore, the detailed examination of the discriminative 
power of all EAS characteristics and their correlations will allow to find a best subset of features 
to be used for experimental data classification. 

 
Figure 5.2. Proton and iron events distribution in 3-dimensional space of features 
 
Table 5.1: EAS features detected by KASCADE experiment 

Ne Number of electrons in EAS 

Nµtr Truncated number of muons (number of muons in the range of 40 to 200m) 

S30 Shower age associated with a Molier radius 30m 

Nµ* Number of muons in central detector 

Nh Number of hadrons 

Ehmax The sum of energy of most energetic hadrons 

Esum Total energy of hadrons 
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5.2 VALIDATION OF MODELS 

5.2.1 COMPARISON OF THE SINGLE EAS VARIABLES 

First of all, we examine single variables to select primary mass discriminants and variables 
correlated with the primary energy. We use for these purposes simulated events, for which the 
"true" values of mass and energy are known. For all EAS variables we calculate the P-values of 
following statistical tests: 

• Student's t-test 

𝑡 =
𝜇< − 𝜇h
ú𝜎<h + 𝜎hh

 

where the 𝜇<, 𝜎<,and 𝜇h, 𝜎h are the mean values and the standard deviations of the first and 
second classes. 

• Kolmogorov-Smirnov D-test 

𝐷 = 𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚c|𝐹<(𝑣) − 𝐹h(𝑣)| 

where F1(v) and F2(v) are the cumulative probability function for first and second 

classes(models):  l𝐹(𝑣) = æ(ck2c)
æ(c)

m 

• Mann-Whitney U-test 
where the T1 and T2 are the sum of ranks of events from first and second samples , and M1, 
M2- are the number of events in samples. The rank is the number of particular event in 
ordered sequence of events (so called variation sequence). 

5.2.2 CORRELATION ANALYSIS 

The correlation analysis was done to select the single variables and - best pairs of variables 
for distinguishing between classes. 
Table 5.2: P-values of statistical tests for proton and iron classes for different models: t - Student, D -
Kolmogorov- Smirnov, U -Mann-Whitney 

QGS           t          D            U VENUS t          D            U  

Ne   3.177    2.747      4.996 Ne 2.869    3.161      5.778  

Nµtr 12.601     6.026    12.723 Nµtr 10.274    4.282      9.403  

S89 17.160    7.489    17.294 S89 20.415    8.314    19.473  

NµCD   7.207    3.452      7.132 NµCD 5.650    2.031      3.872  

Nh   0.673    1.647      2.811 Nh 2.265    3.335      5.848  

Ehmax   5.564    3.066      6.144 Ehmax 3.612    2.402      4.458  

Ehsum   2.478    3.126      3.985 Ehsum 3.457    3.140      6.174  

 

 



50 
 

Table 5.3: Correlation matrix for QGS model 
 

 Mass E0 Ne Nµtr S30 NµCD Nh maxEh sumEh 

Mass 1.00 0.21 -0.03 0.27 0.32 0.15 -0.03 -0.11 -0.07 
E0 0.21 1.00 0.92 0.95 -0.25 0.94 0.78 0.53 0.73 

Ne -0.03 0.92 1.00 0.90 -0.43 0.93 0.85 0.62 0.81 

Nµtr 0.27 0.95 0.90 1.00 -0.23 0.93 0.78 0.52 0.72 

S30 0.32 -0.25 -0.43 -0.23 1.00 -0.33 -0.39 -0.33 -0.38 

NµCD 0.15 0.94 0.93 0.93 -0.33 1.00 0.86 0.60 0.82 

Nh -0.03 0.78 0.85 0.78 -0.39 0.86 1.00 0.70 0.95 

maxEh -0.11 0.53 0.62 0.52 -0.33 0.60 0.70 1.00 0.73 
sumEh -0.07 0.73 0.81 0.72 -0.38 0.82 0.95 0.73 1.00 

 

 
Table 5.4: Correlation matrix for Venus model 

 Mass E0 Ne Nµtr S30  Nµ* Nh maxEh sumEh 

Mass 1.00 0.18 -0.06 0.18  0.33 0.09 -0.05  -0.09 -0.07 
E0 0.18 1.00 0.91 0.95  -0.24 0.94 0.80  0.52 0.76 
Ne -0.06 0.91 1.00 0.90  -0.40 0.93 0.89  0.60 0.85 
Nµtr 0.18 0.95 0.90 1.00  -0.24 0.92 0.81  0.51 0.76 
S30 0.33 -0.24 -0.40 -0.24  1.00 -0.32 -0.41  -0.28 -0.40 
 NµCD 0.09 0.94 0.93 0.92  -0.32 1.00 0.86  0.57 0.83 
Nh -0.05 0.80 0.89 0.81  -0.41 0.86 1.00  0.65 0.95 
maxEh -0.09 0.52 0.60 0.51  -0.28 0.57 0.65  1.00 0.68 
sumEh -0.07 0.76 0.85 0.76  -0.40 0.83 0.95  0.68 1.00 

5.2.3 PROBABILISTIC DISTANCES 

Another important measure of the separability of two samples is the Bhattacharya distance, 
which takes the form: 

𝑅¹3YHY =
<
4
(𝜇h − 𝜇<)H l

·e´·f
h
m
©<
(𝜇h − 𝜇<) +

<
h
	ln

|5e65ff |

ú|·e||·f|
										        

 
where the µi and Σi are the first moments vector and covariance matrix of i-th class. The first term 
of this equation is the Mahalanobis distance and the second term is the correlation distance. 

𝑅5ñ�ñ1 = (𝜇h − 𝜇<)H }
Σ< + Σh
2 ~

©<
(𝜇h − 𝜇<) 

 

𝑅6Ö'' = ln
| ·e´·f

h
|

ú|Σ<||Σh|
 

We select the best subsets of EAS features according the Bhattacharya distance 
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5.2.4 KASCADE EXPERIMENTAL DATA 

2371 events of central calorimeter and 450000 events of array data were r analyzed. The events 
were selected within 15 — 20° zenith angle range (the simulations were done for the same angles). 
To check the homogeneity of the experimental data we divide it to 3 subsamples and make multiple 
comparisons with techniques described above. Also, the negative Log likelihood function value ℒ 
(3.17) and estimate of Bayesian error Re (3.29) were calculated. 
Table 5.6: Experimental data homogeneity t est features used: Nµ

CD, Eh
sum 

 £  R Mahal..  RBhata.  Rcorr.  Re  
1 class  2.911  0.011  0.007  0.024  0.479  
2 class  2.803  0.029  0.021  0.069  0.466  

The homogeneity check for array and calorimeter data one can find in tables 5.6, 5.7, 5.8, 5.9. 
All tests demonstrate rather good agreement with the each other and prove the homogeneity of 
experimental data samples. 

Table 5.7: Experimental data homogeneity test features used: Ne, Nµtr,NµCD, Ensum 

Table 5.8: Experimental data homogeneity test features used Ne, Nµtr 

 £  RMahal.  RBhata.  Rcorr. Re  
I class  1.428  0.002  0.000  0.000  0.490  
2 class  1.425  0.001  0.000  0.000  0.494  

Table 5.9: One dimensional tests :t-Student,D-Kolmogorov-Smirnov,U-Mann-Whitnay 
 t D U 

𝑁# 1.816 1.114 1.433 
 
 

Nµtr 0.080 0.823 0.570 

NµCD 1.595 1.118 1.776 
 Ehsum 1.418 0.407 1.358 

 

5.2.5 QGS AND VENUS MODELS COMPARISON 

To compare CORSIKA different strong interaction models, one have to have the same mass 
composition and energy distribution in experimental and simulated data, to avoid mass depended 
differences. The mass composition of primary cosmic radiation in low energy region (bellow 
2*1015 eV) is measured by direct methods and the following proportion of different nucleus is 
assumed to be true [62]: H- 24%; He- 31%; О - 21%>; Si - 12%>; Fe - 12%. 

To avoid energy spectrum based differences we choose rather narrow energy interval. The 
truncated muon interval (in logarithmic scale) 7.82 ≤ 𝑁%&' ≤ 9.21	is corresponding to the 6 ∗

Table 5.5: The best feature subsets according to the Bhattacharya distance 

 2 best  next best  worst  
QGS  Ne       Nµtr   Nµ*     S30        sumEh Nh      maxEh 

VENUS  Ne       Nµtr   S30        Nµ*     sumEh  Nh       max Eh 

 £  RMahal.  RBhata.  Rcorr. Re  

I class  4.434  0.129  0.038  0.086  0.429  
2 class  4.289  0.056  0.041  0.135  0.453  
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10<7 ≤ 𝐸, ≤ 2 ∗ 10<=eV. Thus, we construct simulation samples from VENUS and QGS  models 
with described above proportion of primaries in the mentioned energy range. The SAME selection 
was made in both, Monte Carlo and experimental data. Both models are very close to experimental 
data (see tables 5.11 and 5.10), but all tests give a small preference to the VENUS model. On the 
colored map 5.3 one can see the regions of preference with experimental data superimposed; 
VENUS model forms a more compact cluster compared with QGS.  

5.2.6 THE KASCADE CLASSIFICATION MATRICES 

The examination of classification matrix and it's index (3.30) gives clues for understanding 
the discriminative power of different EAS measurable for composition estimation. 

The value greater than of 0.6 are still allow for solving the system of equation (3.32) . For the 
lower values the solutions didn't converge and fraction couldn't be reconstructed. Therefore we 
have to find appropriate variables, or reduce the number of classes. Only balance between expected 
classification errors and number of classes used, will allow to obtain reasonable and reliable 
estimates of the fraction. 
Table 5.10. Comparison of exp. data with VENUS and QGS models 

L RBhata Re 
QGS 1.2036 ±0.01 0.023 ±0.001 0.456 ±0.01 
VENUS 1.1818 ±0.01 0.014 ±0.001 0.469 ±0.02 

Table 5.11. One dimensional tests for models andexperiment 
VENUS t           D          U QGS t           D        U  

Ne 

Nµtr 
0.916    2.312    0.901  
3.199    1.450    2.653 

Ne 

Nµtr  
3.369    3.004    4.368  
4.609    2.632    4.787  

Figure 5.3: QGS (red area) and VENUS (white area) clusters and experimental events distribution 
in	𝑵𝒆,𝑵𝝁

𝒕𝒓space 
As one can see in Tables (5.12), (5.13), (5.14), present status of a priori knowledge 

accumulated in M.C. models and represented in training samples, didn't support the attempts to 
make 5-way classification even for all available features. 
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Table 5.12: Calorimeter data, features used	𝑵𝝁
𝑪𝑫,𝑬𝒉𝒔𝒖𝒎  

0.5833 0.1172 0.0260 0.1777 0.0958 

0.4211 0.1194 0.0244 0.2490 0.1861 

0.3126 0.1138 0.0121 0.2701 0.2914 

0.3362 0.1017 0.0276 0.2845 0.2500 

0.3005 0.0863 0.0216 0.2311 0.3606 

Table 5.13: Array data, features used	𝑵𝒆,𝑵𝝁
𝒕𝒓  

0.5148 0.2620 0.1024 0.0565 0.0643 
0.3240 0.2979 0.1846 0.0885 0.1050 
0.1185 0.1803 0.2340 0.1721 0.2951 
0.0707 0.1064 0.1942 0.1958 0.4330 
0.0445 0.0659 0.1006 0.1362 0.6527 

Table 5.14: KASCADE data, features used 𝑵𝒆,𝑵𝝁
𝒕𝒓,𝑵𝝁

𝑪𝑫,𝑬𝒉𝒔𝒖𝒎  

0.4785 0.3085 0.1323 0.0438 0.0368 
0.2678 0.3863 0.1943 0.0766 0.0750 
0.0558 0.1932 0.2903 0.2200 0.2407 
0.0367 0.1247 0.2311 0.2506 0.3570 
0.0368 0.0706 0.1544 0.1471 0.5912 

The situation with 3-way classification is much better, as we need much less a priori infor-
mation, comparing with classification into 5 nuclei groups. As we can see from tables (5.15), 
(5.15), (5.17), even array information only allows to resolve the distribution mixture (3.4). The 
calorimeter information significantly increases the expected fraction reconstruction accuracy. 
The 2-way classification in "heavy" and "light” nuclei can be done with significant larger 
accuracy. See tables (5.19), (5.18), (5.20) 

The information concern 5, 3 and 2 -way classifications for KASCADE different parts is 
summarized in table (5.21), where the separability indexes are presented. 

Table 5.15: 3-way classification by NµCD,Ehsum 

                 
 
 

    Table 5.16: 3-way classification by  Nе, Nµtr 
  0.5749 0.2712        0.1539    0.6831 0.2595              0.0574 

 0.3443 0.3319        0.3239    0.2132 0.4849              0.3019 
 0.2167 0.2976        0.4857    0.0919 0.3078              0.6003 

 
Table 5.17: 3-way classification by 
Nе, Nµtr,NµCD,Ehsum  
 

Table 5.18:2-way classification by 
NµCD,Ehsum 

  0.7108 0.2419      0.0473     
 0.1777 0.5176      0.3048   0.665       0.335 
 0.0779 0.2559      0.6662   0.246       0.754 

 
Table 5.19: 3-way classification by 
Nе, Nµ

tr  
Table 5.20:2-way classification by 
N,Nµtr,NµCD,Ehsum 

  0.863      0.137    0.865    
0.135  

     0.865    
0.135   0.088     0.912    0.076    

0.924  
     0.076    

0.924  
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Table 5.21:  Separability index forKASCADE 
 Index- Index-3 Index-2 
CD 0.154 0.462 0.708 
ARRAY 0.341 0.584 0.887 
ARRAY+CD 0.38 0.626 0.894 

5.2.7 COLORED NUCLEAR MAPS (MASCS) 

It is of greatest importance to divide initial feature space according to different primaries. Each 
decision rule maps vi,(or ui) events to one of 3 nuclei groups. Visa-versa, each nuclei group is 
mapped by decision rule (3.12) to the definite region of feature space. By examining of such 
"nuclear maps" we can make insight to the possibility of defining the type of particular nuclei and 
about expected misclassification to the other nuclear groups. Overlaying the experimental data on 
the colored nonlinear "masks" we can visualize the Bayesian decision procedure. The different 
masks, for various variables, two energy regions and 2 strong interaction models are posted below. 
The colored maps are corresponded to 2 - and 3-way classifications, to Re estimates and tables 
from the previous section. 

 
Figure 5.4: 3-way map, calorimeterinformation. Green points represent oxygen MC data. 
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Figure 5.5: 3-way map, array information. Green points represent oxygen MC data.  
 

 

Figure 5.6: QGS model: 3-way map, array information 𝒑𝒑≡𝒓𝒆𝒅,	𝒑𝟎≡𝒈𝒓𝒆𝒆𝒏,			𝒑𝑭𝒆≡𝒃𝒍𝒖𝒆.		                                     
Black triangles represent oxygen MC data. 𝑬𝑴𝑪	 ∈ N𝟏𝒙𝟏𝟎𝟏𝟓,𝟑𝒙𝟏𝟎𝟏𝟓S 𝒆𝑽 
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Figure 5.7: Q G S  model: 3-way map, array information	𝒑𝒑≡𝒓𝒆𝒅,	𝒑𝟎≡𝒈𝒓𝒆𝒆𝒏,			𝒑𝑭𝒆≡𝒃𝒍𝒖𝒆.																																 
Black triangles represent oxygen MC data .𝑬𝑴𝑪	 ∈ N𝟑𝒙𝟏𝟎𝟏𝟓,𝟑𝒙𝟏𝟎𝟏𝟔S 𝒆𝑽 

 
Figure 5.8: VENUS model: 2-way map, array information.	𝒑𝒑≡𝒓𝒆𝒅,𝒑𝑭𝒆≡𝒃𝒍𝒖𝒆.		 
𝑬𝑴𝑪	 ∈ N𝟏𝒙𝟏𝟎𝟏𝟓,𝟑𝒙𝟏𝟎𝟏𝟓S 𝒆𝑽 
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Figure 5.9: VENUS model: 2-way map, array information.	𝒑𝒑≡𝒓𝒆𝒅,	𝒑𝑭𝒆≡𝒃𝒍𝒖𝒆.		 
𝑬𝑴𝑪	 ∈ N𝟑𝒙𝟏𝟎𝟏𝟓,𝟑𝒙𝟏𝟎𝟏𝟔S 𝒆𝑽 

 
Figure 5.10: VENUS model: 3-way map, array information.  𝒑𝒑≡𝒓𝒆𝒅,	𝒑𝟎≡𝒈𝒓𝒆𝒆𝒏,	𝒑𝑭𝒆≡𝒃𝒍𝒖𝒆.		 
Black triangles represent oxygen MC data.	𝑬𝑴𝑪	 ∈ N𝟏𝒙𝟏𝟎𝟏𝟓,𝟑𝒙𝟏𝟎𝟏𝟓S 𝒆𝑽 
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Figure 5.11: VENUS model: 3-way map, array information.	𝒑𝒑≡𝒓𝒆𝒅,𝒑𝟎≡𝒈𝒓𝒆𝒆𝒏,𝒑𝑭𝒆≡𝒃𝒍𝒖𝒆.		Black triangles 
represent oxygen MC data.	𝑬𝑴𝑪	 ∈ N𝟏𝒙𝟏𝟎𝟏𝟓,𝟑𝒙𝟏𝟎𝟏𝟓S 𝒆𝑽 

5.2.8 FRACTION ESTIMATION 

The KASCADE data fraction estimation was done in 5 energy bins using both calorimeter and 
array variables and both Q G S  and VENUS models. The bootstrapization procedure allows method 
error estimation and, as well, model error estimation. The steady tendency of heavier composition 
above the "knee" is detected for all variables used in analysis and for both models. Unfortunately, 
lack of simulations and experimental data for the highest energies didn't support yet more firm 
conclusions. Figures (5.12 and 5.13) and tables (5.22 -5.29) demonstrate the obtained results on 
the elemental composition energy dependence. 

 
Figure 5.12: VENUS model: Reconstructed classification results using two (p, Fe) (lower graphs) and 
three (p, 0, Fe) (upper graphs) classes for different sets of parameters. 



59 
 

 
Figure 5.13 : QGS  model: Reconstructed classification results using two (p, Fe) (lower graphs) and 
three (p, 0, Fe) (upper graphs) classes for different sets of parameters. 

Table 5.22: 𝟒.𝟏 ≤	 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟒.𝟒,𝑴𝑻𝑺 = 	𝟏𝟓𝟎,𝑴𝒆𝒙𝒑 = 	𝟔𝟒 

 % stat. err. meth. err. model err. 
p 52 ±6 ±2 ±12 
0 44 ±3 ±5 ±12 
Fe 4 ±2 ±2 ±0.5 

 
Table 5.23: 𝒍𝒈𝟏𝟎𝑵𝝁

𝒕𝒓 ≥ 𝟒.𝟒,𝑴𝑻𝑺 = 	𝟏𝟐𝟎,𝑴𝒆𝒙𝒑 = 	𝟐𝟎 

 % stat. err. meth. err. model err. 
p 51 ±11 ±6 ±18 
0 33 ±11 ±10 ±11 
Fe 16 ±8 ±5 ±6 

 
 

Table 5.24: 𝟒.𝟏 ≤	 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟒.𝟒,𝑴𝑻𝑺 = 	𝟏𝟓𝟎,𝑴𝒆𝒙𝒑 = 	𝟔𝟒

 

  % stat. err. meth. err. model err. 
p  66 ±11 ±3 ±7 
Fe  34 ±11 ±3 ±6 

Table 5.25: 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟒.𝟒,𝑴𝑻𝑺 = 	𝟏𝟐𝟎,𝑴𝒆𝒙𝒑 = 𝟐𝟎 

 % stat. err. meth. err. model err. 
P 88 ±5 ±1 ±3 
Fe 12 ±5 ±1 ±4 
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Table 5.26:𝟑.𝟑𝟗 ≤	 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟑.𝟔𝟓,𝑴𝑻𝑺 = 𝟓𝟓𝟓,𝑴𝒆𝒙𝒑 = 𝟔𝟖𝟒𝟐𝟎(𝒂𝒓𝒓𝒂𝒚) 

 % stat. err. meth. err. model err. 
P 51 ±0 ±6 ±6 
0 42 ±0 ±11 ±9 
Fe 7 ±0 ±7 ±1 

Table 5.27:𝟑.𝟔𝟓 ≤	 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟑.𝟖𝟓,𝑴𝑻𝑺 = 𝟐𝟏𝟓,𝑴𝒆𝒙𝒑 = 𝟓𝟔𝟏𝟎𝟎(𝒂𝒓𝒓𝒂𝒚) 

 % stat. err. meth. err. model err. 
P 51 ±0 ±6 ±6 
0 48 ±0 ±11 ±7 
Fe 1 ±0 ±7 ±1 

Table 5.28: 𝟑.𝟖𝟓 ≤	 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟒.𝟏,𝑴𝑻𝑺 = 	𝟏𝟒𝟎,𝑴𝒆𝒙𝒑 = 𝟐𝟎𝟒𝟎𝟎(𝒂𝒓𝒓𝒂𝒚) 

 % stat. err. meth. err. model err. 
p 56 ±0 ±6 ±6 
0 44 ±0 ±11 ±4 
Fe 0 ±0 ±7 ±2 

Table 5.29: 𝟒.𝟏 ≤	 𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟒.𝟒,𝑴𝑻𝑺 = 	𝟏𝟑𝟓,𝑴𝒆𝒙𝒑 = 𝟕𝟓𝟒𝟎(𝒂𝒓𝒓𝒂𝒚) 

 % stat. err. meth. err. model err. 
P 63 ±0 ±8 ±11 
0 33 ±0 ±14 ±12 
Fe 4 ±0 ±8 ±4 

Table 5.30:𝒍𝒈𝟏𝟎𝑵𝝁
𝒕𝒓 ≤ 𝟒.𝟒,𝑴𝑻𝑺 = 	𝟏𝟏𝟎,𝑴𝒆𝒙𝒑 = 𝟐𝟐𝟖𝟓 

 % stat. err. meth. err. model err. 
P 46 ±1 ±10 ±12 
0 46 ±1 ±14 ±11 
Fe 8 ±0 ±6 ±8 
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5.3 THE EXAMPLES OF ANI OUTPUTS 

RUN BEGINS AT 26/04/98 12.39.06  
The platform is DEC Alppa workstation, 600 MHz 
CPU speed. 
Revised version, May 1998, Karlsruhe. 

ANALYSIS AND NONPARAMETRIC INFERENCE(ANI- 98) 

JOB MODE - ONE-LEAVE-OUT- Classification matrix calculation (3.29), 3.18. 
JOB STATUS - noDENCURVE  

DENSITY ESTIMATIORN MODE: PARZ  One of two available density estimators: PARZ or 
KNN 

MAXIMAL EXPONENT 0.4000E+03 Maximal possible power index of exponent. 

STRANGE EVENTS SELECTION, DENSITY<0.1000E -34 Bayes strengeness criterium (3.15). 

Number of BOOTSTRAP replicas 10 Usually greater than 50, See (3.35) 

Number of VARIABLES 3  Size of variables subset, u, v dimensionality. 

CONTROLE (EXPERIMENTAL) SAMPLE: From file n01 1000 events are read starting from 
9800, 200 - from Gaussian population N(0,1), and 800 
from-N(1,1), those the fraction of "first type" events in 
"experimental" sample is 0.2. 

n01 REL. COORDINATES: 9800 1000 Selected: 0 

TRAINING SAMPLE: 
n01 REL. COORDINATES: 1000 1000 Selected: 1000 

The "pure" cases - samples from Gaussian populatios 
N(0,1) and N(1,1), in file n01 there are 10000 five-
dimensional events of both kinds, any events could be 
selected. n01 REL. COORDINATES: 11000 1000 Selected: 1000  

Minimal and Maximal values of Training Sample- 

0.2899E + 01 <X1< 0.4073E + 01 
-0.4220E + 01 < X2 < 0.3916E + 01 
-0.4360E + 01 < X3 < 0.4432E + 01  

 

 

Extremal values of each variable of selected samples. 

SUPERIMPOSED BOUNDARIES:-0.5000E + 01 < XI < 0.5000E 
+ 01 

-0.5000E + 01 < X2 < 0.5000E + 01 
-0.5000E + 01 < X3 < 0.5000E + 01 
-0.5000E + 01 < X4 < 0.5000E + 01  
-0.5000E + 01 < X5 < 0.5000E + 01 

Selective "cuts" for each "measured" variable. 
Restrictions on the V feature space 

 

ONE-LEAVE-OUT- TEST OVER TRAINING SAMPLE 

class 0.90 1.00 1.20 1.40 1.50 1.60 2.00 summ ada 

1 > 1 0.799 0.798 0.796 0.794 0.791 0.788 0.769 0.796 0.794 
1> 2 0.201 0.202 0.204 0.206 0.209 0.212 0.231 0.204 0.206 

2> 1 0.181 0.177 0.175 0.168 0.166 0.164 0.145 0.175 0.168  
2 > 2 0.819 0.823 0.825 0.832 0.834 0.836 0.855 0.825 0.832 

 

ONE-LEAVE-OUT- TEST OVER TRAINING SAMPLE 

class 0.90 1.00 1.20 1.40 1.50 1.60 2.00 summ ada 

1 > 1 0.799 0.798 0.796 0.794 0.791 0.788 0.769 0.796 0.794 
1> 2 0.201 0.202 0.204 0.206 0.209 0.212 0.231 0.204 0.206 

2> 1 0.181 0.177 0.175 0.168 0.166 0.164 0.145 0.175 0.168  
2 > 2 0.819 0.823 0.825 0.832 0.834 0.836 0.855 0.825 0.832 

The parameters of the Parzen density estimator (kernel 
widths). The summ is the mean estimate, ada - the L 
estimate - median of ordered sequence of estimates. 
Seven kernel widths are used. 

 
 
 
 
Each row of this matrix represents the "classification" 
matrix obtained with Bayes dicisicion rule (3.12) with 
particularkernel width 

RUN FINISHS AT 26/04/98 12.39.21 CPU TIME 0.1512E+02 
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RUN BEGINS AT 26/04/98 12.39.30  

ANALYSIS AND NONPARAMETRIC INFERENCE(ANI- 98) Experimental data classification. 
Comparisons of exp.data with theoretical models. 

JOB MODE – CLASSIFICATION  
Minimal and Maximal values of Exp. Data 

-0.316Е + 01 < X1 < 0.4054Е  + 01 
0.3583Е + 01 <X2 < 0.3875Е  + 01 
0.2320Е + 01 < X3 < 0.4420Е  + 01 

Calculated extremal values of experimental data. 
 

MEAN OF LOG-LIKELIHOOD RATIO (first/second) 

-0.501- 0.457-0.383-0.325-0.302-0.281-0.217- 0.360- 0.329 

Calculated according (3.16), negative values 
corresponds to the 2 class preference, positive - to the 
1. 

LOG-LIKELIHOOD FUNC. - exp. according to theor. models 

class0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada  

1 > 1 5.162 5.171 5.227 5.324 5.384 5.449 5.741 5.308 5.332  
1 > 2 4.668 4.718 4.846 4.999 5.082 5.168 5.524 4.948 5.003 

Negative of (3.17), the smallest values are correspond 
to the best model. 

MEANVALUES OF BAYES ERROR AND PR. DISTANCES 
R  MAHALO  R  BHATA  R  CORR  BAYES 

1.548 0.204 0.041 0.267 

Sampling estimates of probability distances between 
experimental and model data (3.19), (3.26). 

LOG-LIKELIHOOD FUNC. - exp. according to theor. Models 

class0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada 

1 > 1 5.162 5.171 5.227 5.324 5.384 5.449 5.741 5.308 5.332  
1 > 2 4.668 4.718 4.846 4.999 5.082 5.168 5.524 4.948 5.003 

Usually greater than 50, See (3.35) 

BAYSIAN CLASSIFICATION OF CONTROL SAMPLE 

class  0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada 

1 > 1 0.309 0.309 0.306 0.298 0.296 0.292 0.280 0.305 0.2973 
1 > 2 0.691 0.691 0.694 0.702 0.704 0.708 0.720 0.695 0.703 

Empirical fraction estimation by implementing Bayes, 
decision rules (3.31),�̀� 

RECONSRUCTED PROPORTION OF 1 TYPE EVENTS 

0.207 0.213 0.211 0.208 0.208 0.205 0.216 0.209 0.206 

Reconstructed proportion of first type events (3.33), 

𝑷𝒆 

SEPARABILITY MEASURE 

0.654 0.657 0.657 0.661 0.660 0.659 0.657 0.657 0.661 

THE ESTIMATED PROPORTIONS (CERM RQN PROGRAM) 

class 0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada  

1 > 1 0.207 0.213 0.211 0.208 0.208 0.205 0.216 0.2090.206 
1 > 2 0.793 0.78 70.789 0.792 0.792 0.795 0.784 0.791 0.794 

The solution of linear equations system (3.32). 
 

RUN FINISHS AT 26/04/98 12.39.38 CPU TIME 0.7967E+01 

 
 
 
 

RUN BEGINS AT 26/04/98 12.39.49  
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ANALYSIS AND NONPARAMETRIC INFERENCE(ANI- 
98) 

Bootstrapisation of Bayes risk, classification rates and 
fraction estimates. Obtaining of fraction errors. 

JOB MODE - BUTSTRAP  
MEAN OF ONE-LEAVE-OUT-TEST 

class0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada  

1 > 1 0.804 0.804 0.801 0.797 0.792 0.789 0.773 0.801 0.796 
1 > 2 0.196 0.196 0.199 0.203 0.208 0.211 0.227 0.199 0.204 

2 > 1 0.183 0.182 0.180 0.174 0.171 0.167 0.157 0.179 0.173  
2 > 2 0.817 0.818 0.820 0.826 0.829 0.833 0.843 0.821 0.827 

The same as in "ONE-LEAVE-... mode, but averaged 
over В bootstrap replicas, see section (3.3.7). 

𝑅∗# 

BOOTSTRAPIZATION OF CLASSIFICATION 

class0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada  

1 > 1 0.309 0.310 0.305 0.301 0.299 0.297 0.286 0.305 0.301  
1 > 2 0.690 0.690 0.695 0.699 0.701 0.703 0.713 0.695 0.699 

The same as in "CLASSIFICATION" mode, but 
averaged over В bootstrap replicas, see section (3.3.7). 

𝑃Z∗# 

 

VARIANCE OF ONE-LEAVE-OUT-TEST 

class 0.90 1.00 1.20 1.40 1.50 1.60 2.00 summ ada 

1 >1 0.019 0.020 0.025 0.029 0.033 0.036 0.053 0.025 0.029 
1> 2 0.019 0.020 0.025 0.029 0.033 0.036 0.053 0.025 0.029 

2 >1 0.013 0.015 0.019 0.025 0.028 0.032 0.047 0.020 0.025  
2 >2 0.013 0.015 0.019 0.025 0.028 0.032 0.047 0.020 0.025 

The m.s.d. of empirical risk estimates. 

CLASSIFICATION VARIANCE 

class 0.90 1.00 1.20 1.40 1.50 1.60 2.00 summ ada 

1 > 1 0.010 0.010 0.015 0.020 0.022 0.025 0.042 0.016 0.020  
1 > 2 0.010 0.010 0.015 0.020 0.022 0.025 0.042 0.016 0.020 
 

The m.s.e. of proportion estimates, see section   

BOOTSTRAP AVERAGE OF RECONSTRUCTED 
PROPORTION 

class  0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada 

1 > 1 0.2040.2060.2010.2040.2060.2090.2100.2030.205  
1 > 2 0.7960.7940.7980.7960.7940.7910.7900.7970.795 

Reconstruction of fraction for each bootstrap replica 
then averaging see section (3.3.6). 

𝑃Z∗ 

SDE OF RECONSTRACTED PROPORTIONS 

class  0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada 

1 > 1 0.0110.0120.0120.0130.0150.0180.0130.0120.014  
1 > 2 0.0110.0120.0120.0130.0150.0180.0130.0120.014 

The m.s.e. of reconstructed proportions 

Reconstructed fractions with bootstrap mean 
classification and risks. 

PROPORTIONS (AVERAGED RISKS AND 
CLASSIFICATIONS) 

class  0.90 1.00 1.20 1.40 1.50 1.60 2.00summ ada 

1 > 1 0.2040.2060.2020.2040.2070.2100.2100.2030.205  
1 > 2 0.7960.7940.7980.7960.7930.7900.7900.7970.795 

RUN FINISHS AT 26/04/98 12.45.38 CPU TIME 0.7967E+04 
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APPENDIX A B.IN INPUT FILE EXAMPLE 

3 
2,10 
mhgg-light.dat 
mhgg-heavy.dat 
../../ARO/aroexp.txt 
mhgg-heavy-e0.dat 
mhgg-heavy-e0.hbook 
8 
0,0,0,0,0 
400,400,10,10,10 
0,2000000 
non 
LEARNING 
SEQUENTAL 
PARZ 
SQUARE 
(12f10.4) 
1 
0.5,0.5,0.2,0.2,0.2 
RECONSTRUCT 
7 
0.01,0.03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9,1. 
900000000.,0.000000000000001 
7 
2 
3,4,5,6,8 
2 
-1000,-1000,-1000,-1000,-1000,-1000,-1000,-1000 
1000,1000,1000,1000,1000,1000,1000,1000 
pseudo 
norenorm 
1,1,1024,11 
0,20,1024,22 
1,2,3,4,5 
3,2,5,1  - NN configuration, number of layers and number of neutrons in each layer : number of 
neutrons in the first layers equals number of variables 
500000,10.,9.,1.,644  Number of iterations, radnom step, sigma criteria and shift of random number 
generator 
1.,1. 
0.53,0.47 
neuron 
montec 
msd 
memory 
better 
0.000001 
0.51 
5 
0.01,1.,0.05,1.,0.1, 1.,0.2,1.,0.3,1.,0.5,1. 
0,1. 
200000 
1 
Ne 
S 


