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A Model Independent Method for Determination
of Muon Density Fluctuations in EAS
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Abstract

It is shown how to determine fluctuations of the muon density in EAS at a given distance from the core, for
showers with a fixed size. The method does not make use of any pre-assumed lateral muon distribution and
uses only information whether muon detector has been hit by at least one muon.

1 Introduction:
The KASCADE experiment gives a unique opportunity to study in detail some shower characteristics due

to a large number of detectors. In particular it is suitable to determine fluctuations of the muon densities in
showers using the information from the Array of 192 muon detectors (3.24 m2 each). In this paper we present
how to determine the muon density probability distribution at a given core distanceR for showers with fixed
shower sizeNe. In our method the muon density�� at a givenR, is not being determined for each individual
shower as that would need an a priori assumption about its lateral distribution. We prefer to avoid this and the
fluctuations of��(R) have been reconstructed from a sample of showers with fixedNe.

2 The idea:
The shower sample used in this analysis has been obtained from a sample of the KASCADE data. We have

chosen only almost vertical showers (zenith angle< 18o). Our sample has been further divided into rather
narrow bins of shower size�logNe = 0:1. Our aim is to determine probability density distributionf(N) of
the number of muonsN falling on a fixed distance ring, for a sample of showers from a fixedNe bin. The
core distance has been divided into bins of�R = 10 m. We shall use here the information from the muon
Array detectors, withEth > 0:3 GeV. Fluctuations ofN are caused by fluctuations in shower development in
the atmosphere and by the distribution of the primary particle mass.

Let us first choose the showers with a fixed number of muon detectors m at a given distance ring. If their
number isn(m) then the average number of showershF(k;m)i with k (out ofm) muon detectors being hit by
at least one muon, should be

hF(k;m)i = n(m)
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e��N(m�k) � f(N)dN (1)

where� = Sdet=Sring (ratio of the area of a muon detector to that of the whole distance ring). In (1) we
have assumed that showers have radial symmetry and that theN muons fall on the whole ring(R;R +�R)



independently and randomly. To determineF(k;m) experimentally we need a criterion for a muon detector
to be hit by at least one muon. First, we make our analysis only for distancesR > 40 m, where the punch
through effect can be almost neglected (at least for smaller showers). Next, after looking at distributions of the
energy deposit for single muons from many muon detectors, we have chosenE > 3:5 MeV as our condition
that a detector has been hit by muon(s). We would like to underline here that for our purpose we do not have
to worry about how many muons have hit a detector (which is not always possible with a good accuracy).

The actually observed number of showersF(k;m) with k hit detectors fluctuates with the Poissonian
distribution around its expected value, given by (1) and is of course the better representation of its mean
hF(k;m)i, the bigger is the number of showersn(m). The KASCADE experiment has a big advantage of
having many muon detectors (192 in the Array), allowing the numberm of available detectors in a given ring
to reach values even above twenty (being around 10 most frequently).

Thus, in principle we can measure many valuesF(k;m) as0 � k � m, and for manym as well. Our
sample, however, was not big enough for all experimentalF(k;m) to represent their expected valueshF(k;m)i
with a good accuracy. So, to determinef(N) (for anyNe andR bin) we have summed ourF(k;m) histograms
over allm (over all positions of the shower core), obtaining histogramsF(k) = �mF(k;m). By summing up
overm we lose some information contained in thek distributions for each individualm. We gain however, by
getting smaller statistical relative uncertainties ofF(k) and by simplifying evaluation off(N).

3 Factorial moments of the distribution of k and a check of the Array:
From (1) are can easily calculate moments of the probability distribution ofk: hki,



k2
�

and so on. It turns
out, however, that in this case it is the factorial moments ofk which are in a simpler way related to the muon
number distributionf(N):

hk(k � 1) : : : (k � i+ 1)i = m(m� 1) : : : (m� i+ 1) �
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f(N)dN (2)

for i = 1; 2; : : :. As 1� e��N = p, wherep is the probability of hitting a detector onceN muons have fallen
on the ring, we see that the integrals in the right-hand sides of (2) represent the successive moments of the
distribution ofp. Thus, in principle, having all moments one could obtain the probability distribution ofp,
g(p), and thenf(N) = g[p(N)]. We notice, however, that the higher is the order of the factorial moment ofk,
the smaller is the part of thek distribution on which it depends. Thus, as the number of showers with higherk
finally decreases, one would need very big statistics in order to determine higher order moments ofk (andp)
with a reasonable accuracy. So, in our analysis we shall not use formulae (2) to determine muon fluctuations
f(N). We shall use them, however, to check the homogeneity of the detection conditions of the Array. From
(2) it follows that neitherhki =m nor hk(k � 1)i =m(m � 1) should on average, depend onm, that is, on the
position of the shower core. Fig.1 represents the experimentally obtained ratios, as a function ofm, for fixed
Ne and differentR. It can be seen that, within the statistical errors, the ratios do remain independent ofm for
almost any case, confirming the homogeneity of the Array.

4 Methods of determining muon density fluctuationsf(N):
As we have already explained, the basis for determiningf(N) (for any fixedNe andR bin) is a set of

equations (1) summed overm, for k = 0; 1:::;mmax. To find f(N), we have applied the three following
methods:

4.1 Numerical fit: The integral in the right-hand side of (1) summed overm was approximated by a
sum of 10 values of the integrated function at 10 values ofN . The ten unknownsf(Ni) were then found by
a maximum likelihood method allowing for the statistical fluctuations ofF(k). The CERN program MINUIT
was used to find these best fitting valuesf(Ni) on condition thatf(Ni) � 0.

4.2 Method using three moments ofN distribution: It can be applied if�N � 1. After expanding
e��N in (2), keeping only first three terms and averaging overm we can express the three experimentally de-



termined factorial ratios:hki = hmi ; hk(k � 1)i = hm(m� 1)i andhk(k � 1)(k � 2)i = hm(m� 1)(m� 2)i
as linear combinations ofN ,N2, andN3. The latter moments can be easily found. Next we assume thatf(N)
has a shape of a gamma function:f(N) � Np�1e�qN , and calculatep andq fromN , andN2.
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Figure 1: Ratios of the first
(left) and second (right) fac-
torial moments, hki =m and
hk(k � 1)i =m(m � 1) for 5 <
logNe < 5:1 and severalR(m).

4.3 Method adopting f(N) as a gamma function: Here, we assume from the very beginning that
f(N) can be described by a gamma function. Inserting it into equations (2a) and (2b) and averaging overm
we can express the first two factorial ratios (as in the previous case) as function ofp andq. The parametersp
andq can be found numerically. This method does not require small muon densities, as in the case 4.2.
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Figure 2: Distribution of the number of hit muon detectors (Ne; R fixed) – upper histograms. Cor-
responding calculated distributions ofN – number of muons in the distance ring – lower graphs.
Left graphs: 4:5 < logNe < 4:6 and 60 < R < 70m; right graphs:5:5 < logNe < 5:6 and
160 < R < 170m. Points – method 4.1; dashed line – method 4.2; dotted line – method 4.3. The dotted
histograms (upper graphs) are calculatedhF(k)i for f(N) found by method 4.1 (MINUIT).



5 Results:
Fig.2 illustrates the results of our analysis. The upper histograms are the observed distributionsF(k),

chosen for some particular values ofNe andR. The lower graphs represent the corresponding distributions
f(N) ��N (multiplied by the total number of events for each case), obtained by the three methods. It can be
seen thatf(N) obtained by the three different methods give similar results. For example for5:0 < logNe <
5:1 the differences ofN calculated by the three methods are typically below 5%. The muon lateral distributions
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Figure 3: Comparison of the
average lateral distributions of
muons (�� in m�2) obtained in
this work (triangles) for three
bins inNe, with Leibrock et al.
(squares). Circles show values
obtained by EAS–TOP (Aglietta
et al.) forE� > 1 GeV.

��(R) obtained in this paper agree reasonably well with the results of
another analysis of the KASCADE data (Leibrock et al., 1998), as it is
shown in Fig.3. The dispersions of the distributionf(N) obtained by
the three methods differ more significantly, sometimes even by factor
of two. The first method, based on MINUIT, gives usually the biggest
value. As it fits ten values off(N), instead of two parameters of an
analytic (gamma) function, as in the other two methods, we think that
it gives a better description of reality (although it probably is more
sensitive to fluctuations ofF(k). The dispersions�� relative to�� de-
termined by the first method, are presented in Fig. 4. We can see that
typical values are 30 - 40%. For rather smallNe, where our statis-
tics were the best, a trend of increasing relative fluctuations with the
core distanceR can be observed, although its statistical significance
is not big. The fluctuations of�� for fixed Ne should be sensitive
to the primary composition. Shower simulations are needed to show
how big this effect is for the low energy muons considered here. With
big statistics, available from the KASCADE experiment, it would be
possible to obtain more detailed determination of the shapes of the
N (i:e: ��) distributions.
This work has been partly supported by the Polish Committee for Sci-
entific Research (KBN), grant no. 2PO3B16012.
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Figure 4: Relative dispersion of the muon density as a function of core distance for threeNe bins.
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