NSPO's Microsatellite Program

Y. S. Chen and Bill Wu National Space Organization, Taiwan

UNIVERSAT-2006, Moscow State University, Russia 26~30 June 2006

Outline

- Introduction
- University Projects
- FORMOSAT-3/COSMIC Mission
- Related Science Researches in Taiwan
- Intense Observation Period
- Conclusion

Introduction

- Major Part of NSPO's Mission is for Meteorological Research – Typhoon, Flood, Earthquakes, etc., that concerns the General Population on Taiwan
- Ionosphere Research has Generated Some Interests in the Science Community
- Microsatellite Development for Low-cost and Timely Launch of Experiments
- Constellation Deployment Strategy a Future Trend in Microsatellite Applications
- University Teams for Strengthening the Education in Science and Engineering

University Projects NCKU Microsatellite

Name: PACESAT² Orbit: 500 km, 22° Inclination Mass: 30 kg Communication: UHF/VHF Mission: Earth ELF/ULF Observations

University Projects TKU Microsatellite

Name: TUUSAT Orbit: 500 km, 22° Inclination Mass: 22 kg Communication: UHF/VHF Mission: CCD Meteorology Observations

University Projects TKU Microsatellite

University Projects TKU Microsatellite

17:00 Hong Kong Time 12-May-2005 Copyright 2005 EUMETSAT

Before Compression: 340KBbytes

After Compression: 53KBbytes

Adjustable Image Data Compression Ratio

FORMOSAT-3/COSMIC Mission FORMOSAT-3/COSMIC Satellite

- Mission Life : 2 years minimum.
- Design Life : 5 years.
- Constellation : consist of 6 satellites.
- Weight : 62 Kg/each (including propellant).
- Dimension : diameter 103 cm , height 16 cm ; with two circular solar panels deployed at 121 degrees and 59 degrees.
- Orbit period : ~100 minutes.
- Mission Orbit : circular orbit , altitude 700-800 Km , inclination 72 degree.
- Payloads: GPS Occultation Experiment (GOX), Tiny Ionosphere Photometer (TIP) and Tri-Band Beacon (TBB)

NSPO

-

FORMOSAT-3/COSMIC Payloads

- GPS Occultation Experiment (GOX)
 - Function:
 - Track L1/L2 signals to collect occultation data and to determine precise orbit.
 - Mission:
 - Retrieve the vertical profile of atmosphere/ionosphere, for
 - Weather and space weather forecasts
 - Climate and ionospheric research
 - Determine the precise orbit for geodetic research
- Tiny Ionosphere Photometer (TIP)
 - Function:
 - Measure 135.6nm photon emission at satellite's nadir direction.
 - Mission:
 - Retrieve nighttime electron number density for ionospheric research
 - Map aurora boundaries

• Tri-Band Beacon (TBB)

- Function:
 - Transmit phase coherent signals in 150, 400, 1066.7 MHz.
- Mission: (TBB signals will be received on ground receivers)
 - Compute the satellite to ground linked TEC, for
 - 3-D maps of lonosphere tomography
 - Scintillation monitoring

FORMOSAT-3 Assembly at NSPO

FORMOSAT-3 Thermal Vacuum I&T

10~12 Days Continuous Tests for each Satellite

FORMOSAT-3 Acoustic/Vibration I&T

FORMOSAT-3 Solar Panel Tests

FORMOSAT-3 on Minotaur LV

- Inaugural JAWSAT Launch, 26 January 2000, successfully deployed 11 satellites into targeted orbits
- Launched from California Spaceport (SSI Commercial Launch Facility)
- Demonstrated ability to launch with minimal infrastructure support
- Successful MightySat II Launch, 19 July 2000
 - Successfully delivered DoD Space Test Program/AFRL MightySat II Payload to targeted orbit
- Successful XSS-11 Launch, 11 April 2005
 - Successfully delivered DoD Space Test Program XSS-11 Payload to orbit
- Successful STP-R1 Launch, 22 September 2005
 - Sucessfully delivered DoD Space Test Program STP-R1 Payload to orbit

FORMOSAT-3 Launch Trajectory

FORMOSAT-3 Mission Operation

FORMOSAT-3 & GPS Constellations

GPS constellation

- 24-30 satellites in 6 orbit planes (55 inclination)
- ~3.8km/s at 20,200km altitude
- Orbit period ~12hr
- FORMOSAT-3 Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)
 - 6 satellites in 6 orbit planes
 (72 inclination)
 - ~7km/s at 700-800km altitude
 - Orbit period ~100min

System Architecture

GOX Measurements: 2500 Soundings Per Day

 An average of 2500 globally distributed atmospheric soundings will be obtained each day.

TIP Measurements

- Nighttime ionospheric TEC measurements (e⁻)
 - radiative recombination
 - $O^+ + e^- O + hv(135.6nm)$
- Map aurora boundaries (O)
 - *electron impact excitation*
 - $O + e^{-} -> O + e^{-} + hv$
- With the BaF2 filter, TIP can detect the molecular N₂ LBH emissions. (N₂)
- O, N₂ & e⁻ number densities are all retrieved from measured FUV radiance intensity (or photon counts, #/sec).

Orbit track

TBB Measurements

- Signals measured by a chain of ground receivers will be used to
 - Retrieve electron density & 2-D Tomography

Data Processing in CDAAC

Real-time processing (RT)

- Run automatically, as data are received, on one or more cluster nodes.
 - Currently processing CHAMP results are generated on ~15 min. after receipt of CHAMP raw data
 - Expect to complete data processing from one orbit in 10-15 min after reception of FORMOSAT-3 occultation raw data
- Uses predicted GPS orbits and forecast weather grids (NCEP/AVN)

Post-Processing (PP)

- Done 1-2 months behind real-time, in batches of one month
- Done with more fiducial sites, precise GPS orbits and better fiducial troposphere values than those used in RT

CDAAC Development

Develop software, database, and web system

- Improve and speed up for the orbit, atmosphere inversion, data validation, and constellation data simulation
 - open loop tracking
 - Single difference for excess phase computation
 - non-local observational operator
- Ionospheric profiling and tomography

Fiducial network

- ~20 IGS stations (igsHrf)
- ~30 Natural Resources of Canada (NRCan) stations (canHrf)
- 5 netRS GPS receivers (cosHrf)
 - 3 in South Pacific + 2 in Brazil
- Global Bit Grabber network (under plan)
 - To assist with open loop tracking

Fiducial Network

Related Science Research in Taiwan Application of FORMOSAT-3/COSMIC Data

- Improve global/regional scale weather and space weather forecasting
- Provide data sets for the research of climate change, global warming detecting, scintillation, ionospheric structure, and Earth gravity field.
 - Meteorology: global weather analysis, interaction between low- and mid- latitudes weather system...
 - Climate: long-term observation record, global climate variability
 - Ionosphere: TEC, electron density distribution, scintillation, sporadic E (E_S) layer...
 - Geodesy: gravitational field, precise satellite orbit...

Atmospheric Research in Taiwan

- Typhoon study by 3D-VAR assimilations
 - Using CHAMP and SAC-C data to study the route and rainfall of typhoons passing Taiwan.
- Implementation of ray-tracing operator and bending angle (and/or local refractivity) assimilation system into the CWB forecast model.
- Occultation inversion technique
 - Occultation retrieval scheme by 3D vector analysis
 - New ionospheric correction method
 - Effects of multipath and diffraction on retrieved parameters
 - Ground-based GPS observations
 - sensing precipitable water vapor and its dynamics during the passage of typhoon

Development of Occultation Inversion Technique

• Comparison of retrieved profiles for bending angle and temperature

- NCURO is developed by Dr. Huang (2004)

Assimilated Typhoon Route By Adding CHAMP Occultation Data

- Mindulle typhoon in June, 2004
 - Red: CWB's optimized route
 - "G": assimilated route by using traditional measurements
 - "B": assimilated result by traditional and CHAMP data
- Agree with the optimized route?
 - "B" is better than "G" before^{⁵0}
 Mindulle landed Taiwan.
 - Both "G" and "B" are bad after landing.
 - Due to the complexity of topographic model and the long time computation error.

Ionospheric Research in Taiwan

- Setup of four transmitter/receiver pairs of 30 MHz bistatic coherent radar system in Taiwan:
 - Measuring the ionospheric E region irregularity to determine the possibility of the TBB or GPS signal scintillations
 - For TBB operation in the Pacific chain, the bistatic radar observations will provide a referenced index for the UHF&L-band mode to be turned on.
- More vertical data with Sounding Rocket Experiments
- Ionospheric global modeling and space weather forecast
- 3D/4D Computerized ionospheric tomography (CIT)
- Retrieval/validation of electron density through

occultation data

Geodetic Research in Taiwan

POD techniques

- A CTODS (reduced-dynamic orbit) package was developed for precise orbit and gravity determination from spaceborn GPS data.
- Kinetic orbit procedures were developed to support the nearreal time processing of occultation inversion.

• Earth's mantle discontinuity in 3D

- The 3D inversion of the Earth's underground structures was studied by comparing the recent gravity model with the perturbation of satellite orbit from POD data.
 - Two major boundary layers in the Earth's mantle are at depth of 400 km and 670 km within the mantle, respectively.

Intensive Observation Period FORMOSAT-3 Constellation Orbits Deployment

- Launch and early orbit (L&EO): 1st month
- Constellation deployment: 1 ~ 12th month
- Final orbit: after the 13th month

Intense Observation Period (IOP) Campaign

- Taking advantage of very dense observation points due to localized (in longitude)
 FORMOSAT-3 satellite orbits during the earlier deployment phase to conduct IOP campaign.
 - Allows most complete comparison and validation of FORMOSAT-3 GPS occultation observations with ground-based observations and dropsonde experiments and other space-based observations in East Asia longitude region.
 - Improve weather forecast capability, typhoon prediction, and monsoon rainfall in East Asia region.
 - Improve global space weather monitoring capability and earthquake application.

IOP Items

- IOP campaign provides a platform for Taiwan to play a major role in international collaboration on research in atmosphere, ionosphere and geodesy.
 - Period: 2006/05 2006/11
 - Hold an IOP Campaign workshop/conference in November or December, 2006 in Taiwan
- IOP Campaign for atmospheric study in East Asia Region
 - Taiwan: 2006/05 2006/11
 - Southwesterly flow: 2006/05 2006/06
 - Typhoon: 2006/05 2006/10
 - Instruments: radiosonde, GPS receiver, dropsonde, satellites, etc.
- IOP Campaign for global ionospheric study
 - Observation comparison between GOX, TIP, ground GPS and ionospheric radars: 2006/05-2006/11

Conclusion

- University microsatellite projects are on going.
- FORMOSAT-3/COSMIC has been launched on April 14 2006.
- With the real-time operations, FORMOSAT-3/COSMIC results will complement other Earth observing systems and improve global weather analyses and Numerical Weather Prediction (NWP) forecasts.
- The science teams in Taiwan are actively pursuing FORMOSAT-3/COSMIC researches in the areas of GPS occultation for weather forecasting, climate prediction, ionospheric monitoring, and a suite of related earth science studies.
- The period during the orbit deployment provides a very unique opportunity for special studies. Many researches are being planned for this Intensive Operation Period.

