SEISMO - IONOSPHERIC COUPLING AND EARTHQUAKE FORECAST PROBABILITY

V. Korepanov (1), G. Lizunov (2)

 (1) Lviv Centre of Institute of Space Research, Lviv, Ukraine (vakor@isr.lviv.ua/+380-322-639163);
(2) Institute of Space Research, Kyiv, Ukraine (liz@ikd.kiev.ua/+380-44-5264124)

INFLUENCE FROM "ABOVE"

Number of earthquakes in the Mediterranean area summed over the 11-year solar cycles (solid line) and solar activity in the maxima of the solar cycles (broken line) in the period 296–1000; 3-point running means.

Courtesy of Dr. Katya Georgieva

Average number of earthquakes (solid line) and solar activity (broken line) in the 11-year solar cycle for the period 1900–1999

Observations (1996) – long term

Dr. Gerald Duma

Observations (1996) – daily range

Gradient ∆H calculated from IGRF 1900-2010 vs. Seismic energy release / year

Courtesy of Dr. Gerald Duma

Gradient ∆H calculated from Sq-Model vs. Seismic energy release / hour LT

TAIWAN

Earthquakes $M \ge 5$ Grad $\Delta H - N55E$ (Sq-Model)

CALIFORNIA

Earthquakes $M \ge 6$ Grad $\Delta H - N30E$ (Sq-Model)

Courtesy of Dr. Gerald Duma

Triggering mechanism:

Stress due to the mechanic moment of Sq for a single loop (Duma, Ruzhin, 2003)

Magnetic moment MM:

Diameter D = 3000 km Ring current I = 10 * 10³ A $MM = \mu_0 * I * (D^2 * \pi / 4)$ = 0.89 * 10¹¹ Am²[= Vsm]

Torque T :

<u>Result</u>:

Torque is equivalent to energy of an earthquake M 5.1

Energy concentrates to a 30° segment

Table 1. Contribution of each current ring to the total magnetic moment of the current vortex (Fig. 12) and torques, generated by an average horizontal intensity of $30\,000\,n$ T of the Earth's magnetic field. The results reveal that even in a smaller circular area surrounding the center of the current system (which is at 32° geogr. latitude) considerable torques are generated, equivalent to the energy of a M4.7 or M5.5 earthquake (bold values)

	Ring radius to vortex center (km)	Current (10 ³ Amp)	Magnetic moment (10 ¹¹ Am ²)	Torque (10 ¹² Joule)	Equivalent magnitude (lgE = 4.8 + 1.5M)	
	3217	-15.9	6.5	19.4	5.7	
	2242	-36.5	7.2	21.7	5.7	
	1267	-53.0	3.4	10.1	5.5	
	292	-62.2	0.2	0.6	4.7	
		total current system	17.3	51.9	5.9	
The	magnetic field inten	sity: <i>H</i> = – 2	$\frac{IR^2}{2(R^2+z^2)^{1.5}}$	or $B(r)$	$hT) = \frac{200M(Am^2)}{(R^2 + z^2)^{1.5}}$	
Z <<	<i>R</i> (ring radius):	$B = B_{n}$	$_{\rm nax} \approx \frac{200M}{R^3}$	(AIII) (m)	$=\frac{200\pi(A)}{R(m)}$	
$R=3.2\underline{17}*10^6 \text{ m}, I=1.6*10^4 \text{ A}$						
$M = \pi R^2 I \approx 5.2 * 10^{17} \text{ A} \cdot \text{m}^2$						
	Torque: <i>T</i> = <i>MB</i> = 1.6*10⁹ N*m , [N*m]=[J],					

To compare with erroneous result: $T=MB=1.94*10^{13}$ J!.

No correlation between lunar tides, producing strongest stresses in Earth's crust, and earthquake activity.

Probably, no mechanical stress has to be considered as earthquake triggering mechanism.

Possible mechanism of earthquake triggering by magnetic field

FLUENCE FROM "BELOV"

Earthquake precursors detection methods

CO- AND POST-SEISMIC IONOSPHERIC PHENOMENA

Direct AGW/TID registration with "AE-E" satellite

"Atmosphere Explorer - E"/ Mission of the beginning of 70-th. Orbit: inclination 19 Degree, altitude 250-300 km. Sensors for neutral and ionized atmosphere components.

Direct AGW/TID registration with "AE-E" satellite

[O⁺] variation through

5 hours after earthquake

Post-seismic TEC variations

90 minutes after the earthquake

From J. Artru et al, Tsunami in the open ocean detected and imaged by GPS ionospheric monitoring

POSSIBLE SEISMIC EVENTS IONOSPHERIC PRECURSORS

Propagation paths from the transmitter, NWC (in Australia) to the two receiving sites (Kochi and Chofu)

T. HORIE*, S. MAEKAWA, T. YAMAUCHI and M. HAYAKAWA A possible effect of ionospheric perturbations associated with the Sumatra earthquake, as revealed from subionospheric very-low-frequency (VLF) propagation (NWC-Japan) Temporal evolution of the VLF amplitude night-time fluctuation (dA2) at the three observing stations, Chofu (Blue), Chiba (Black), and Kochi (Red)

SNR distribution during two months of observation for NWC transmitter in Australia (F= 19.8 kHz) day-time orbits, LT~10.

Courtesy of prof. Oleg Molchanov SNR values for NWC VLF transmitter (19.8 kHz) from November 1 to December 25, 2004 before Sumatra earthquake SNR values for NWC VLF transmitter (19.8 kHz) from January 6 to February 15, 2005 after Sumatra earthquake

Courtesy of prof. Oleg Molchanov

Méthode des époques superposées

Distance entre l'épicentre et la trace de l'orbite < 700 km

Courtesy of Dr. Michel Parrot

2628 séismes avec M > 4.8 et d < 40 km

Courtesy of Dr. Michel Parrot

TIME DELAY EXPLANATION

Possible mechanisms of energy transfer from lithosphere to ionosphere

- Fair weather currents → affecting ionized ionosphere component
- Atmospheric gravity waves → affecting neutral ionosphere component

Ionosphere composition

• Ionosphere is a small chemical additive to the neutral atmosphere.

• That is why any even minor movements of neutral gas at ionospheric heights are strongly influencing ionospheric dynamics.

• Because of this AGW propagation are accompanied by corresponding periodic variations of plasma parameters.

AGW EXPERIMENTAL STUDY

CORRELATION BETWEEN ATMOSPHERIC PRESSURE AND GEOMAGNETIC FIELD VARIATIONS

Variation of geomagnetic field at conjugated point

Neutral atmosphere - ionosphere coupling

Theory. Atmosphere as a filter of AGW

Theory. AGW magnetic signature

Let us consider ambient electric current in the ionosphere:

$$\vec{j} = \sum_{\alpha} e_{\alpha} n_{p} \vec{V}_{\alpha} = \hat{\sigma} \cdot \vec{E}_{0}$$

Then its change by AGW:

$$\delta \vec{j} = \sum_{\alpha} e_{\alpha} n_{p} \cdot \delta \vec{V}_{\alpha} + \delta \hat{\sigma} \cdot \vec{E}_{0} + \hat{\sigma} \cdot \delta \vec{E}_{0}$$

Dynamo-current: ions Modification

are dragged by neutrals

Modification of **electric field distribution** in global electric circuit

Ambient **current variation** due to conductivity modulation

Theory. AGW magnetic signature

Numerical estimations

$n_p = 2 \cdot 10^4$	cm ⁻³ (night)	$n_p = 2 \cdot 10^5 \text{ cm}^{-3} \text{ (day)}$		
u _{AGW} = 10 m/s (moderate)	u _{AGW} = 70 m/s (extreme)	$u_{AGW} = 10$ m/s	u _{AGW} = 70 m/s (extreme)	
$\delta B = 0.3 \text{ nT}$	$\delta B = 2 nT$	$\delta B = 3 \text{ nT}$	$\delta B = 20 \text{ nT}$	

Parameters are given for effective dynamo-current altitude $z = z_i \sim 130$ km

Theory. AGW magnetic signature in conjugated point

Auroral AGW propagation

(after the data of DE-2 satellite)

Nighttime

Auroral AGW propagation

(after the data of DE-2 satellite)

Daytime

Background and AGW intensity

Background		Auroral AGW-free sector		Seismogenic AGW (M _{max} ≈ 5,5)	
Day	Night	Day	Night	Covered area	AGW amplitude
0,2-0,3%	0,4-0,5%	± 70°	up to ± 40°	R _{max} ≈3500 km 20% of ionosphere perturbed	< 1% night < 0,7% day

WDC for Seismology: 1983 year

4100 EQ with $M > 4,5 \rightarrow 3-5$ times per day

1813 EQ with $M > 5,0 \rightarrow$ once per day

140 EQ with $M > 6, 0 \rightarrow 1-2$ times per month

Conclusions - 1:

The experimental results evidence that ionospheric response to seismic and meteorological processes occurs in a definite range of parameters that are characteristic for the middle-scale AGW/TID. So, we found that:

 Atmosphere plays the role of filter that transmits upwards only sufficiently long and quick AGW;

• Seismic and meteorological AGW sources excite middle-scale TIDs in ionosphere.

Conclusions -2:

- Horizontal AGW wavelength is 400...700 km, period ~ 1 hour;
- Relative AGW amplitude near the Earth surface is about 0.01%, at ionospheric heights about 1...10%;
- Relative TID amplitude reaches 20%, in variation of magnetic field component ~1...20 nT;
- At F-region altitudes the length of AGW/TID wave train is approximately 3000 km (five-six wave periods). The disturbances are shifted at a few thousand kilometers from the earthquake epicenters; they are registered through approximately 5 - 10 h after the shock.

Conclusions - 3:

- Seismo-ionospheric coupling existence conclusively confirmed.
- AGW is the most probable energy carrier from lithosphere to ionosphere.
- Several sources of interference exist: background variations, auroral AGW propagating till midlatitudes, especially at night time, terminator – generated AGW, etc.
- Still necessary to discover: statistics of background formation along seismically active and fault zones, the seismogenic AGW generation mechanism during earthquake preparation phase.

Thermal gradient during EQ preparation phase – possible source of AGW generation

Thermal anomaly area ~ hundreds of km ~ middle-scale AGW

Future plans

- On-ground observations
- Satellite experiment

Frequency Angular Sounding of Ionosphere

Separate antenna and reception antennae system configuration

A fragment of constructed "effective" reflecting surface for 12:25 UT 15.03.2001

National Space Agency of Ukraine satellite project proposed for First European Space Program

IONOSAT project main tasks

- Scientific and methodological substantiation of the efficiency of the use of LEO satellites for SW monitoring, corresponding technological realization development and tests.
- Systematic study of the dynamic response of the ionosphere to the influences "from above" (solar and geomagnetic activity) and "from below" (meteorological, seismic and technologic processes).
- Spatial-temporal monitoring of ionospheric disturbances with the aim to extract the signatures of natural and technogenic catastrophic events in the lower atmosphere and at the Earth's surface.

IONOSAT experiment

Tentative launch date: 2012 Mean orbit altitude: ~ 450 km Orbit inclination: ~ 83° Distance between satellites: 50-3000 km

Optimal project realization schedule

2008	2009-2010	2011-2012
Decision-making, sending of invitations, feasibility study (Stage A)	Development and manufacturing of the devices, autonomous tests (Stage B)	Assembling, assembly testing and launch. (Stage C)

PARTICIPATION PROPOSALS ARE WELCOME

vakor@isr.lviv.ua

