THE IMPACT OF SUDDEN STORM COMMENCEMENT ON MAGNETOSPHERIC **ION DISTRIBUTIONS**

> Vahé Peroomian and Mostafa El-Alaoui UCLA Institute of Geophysics and Planetary Physics

Outline

- Introduction
 - Motivation
 - Approach

• The 28 October 2001 Storm

- Observations
- Large-Scale Kinetic Results
 - Physics of ion population
 - Physics of ion injection
 - Physics of ion acceleration
- Comparison with the 17 April 2002 and 24-25 September 1998 Storms

Motivating Question

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture. Impact of CME with
Earth's magnetosphere
is the most violent
component of a
geomagnetic storm.

How does Sudden Storm Commencement affect the ion distributions in the inner magnetosphere: how are ions energized and injected?

The magnetosphere is defined by its current systems and by its plasma regimes.

Population of the Magnetosphere

 Two sources: Solar wind (Mostly H⁺, some He⁺⁺) and ionosphere (H⁺, He⁺, O⁺, ...)

Approach

- Run global magnetohydrodynamic (MHD) simulation of each storm event using upstream data from solar wind monitor spacecraft.
- Follow orbits of millions of ions in timedependent electric and magnetic fields from MHD simulation using full Lorentz force equation.
- Launch H⁺ ions in the solar wind; launch O⁺ ions from the ionosphere throughout each storm.

The Large-Scale Kinetic (LSK) Modeling Technique

- Follow the orbits of a large number of particles in specified global electric and magnetic fields.
- Use Lorentz Force Equation to integrate particle orbits:

$$mrac{dec{v}}{dt} = q \left(ec{E} + rac{ec{v} \times ec{B}}{c}
ight)$$

Include kinetic physics on global scales

Outline

- Introduction
 - Motivation
 - Approach

• The 28 October 2001 Storm

- Observations
- Large-Scale Kinetic Results
 - Physics of ion population
 - Physics of ion injection
 - Physics of ion acceleration
- Comparison with the 17 April 2002 and 24-25 September 1998 Storms

Global Indices for 28 October 2001

AE AU AL (nT)

Solar wind H⁺ Ion Launch Scheme

- Ions launched at $X = 17 R_E$, upstream of bow shock at 1minute intervals beginning ~140 min prior to the SSC.
- Grid spacing 0.5 $R_E \ge 0.5 R_E (Y-Z)$.
- 100 ions per grid point.
 (>2 × 10⁷ ions per launch)
- Ions launched as a drifting Maxwellian with V_{SW} and T_{SW}.
- Flux of launched ions normalized to solar wind flux through upstream boundary.

Ionospheric O⁺ Ion Launch Scheme

- Ions launched every minute using *Strangeway et al.* [2005] formula relating upflow to precipitating density obtained from MHD simulation.
- Spatial Distribution (SM coordinates): $\lambda = \pm (60^{\circ} 85^{\circ})$ All MLTs
- Altitude: $2.2 R_E$
- Temperature: 30 eV
- Streaming Energy: 50 eV
- Total of $> 2 \times 10^7$ ions launched.

Outline

- Introduction
 - Motivation
 - Approach

• The 28 October 2001 Storm

- Observations
- Large-Scale Kinetic Results
 - Physics of ion population
 - Physics of ion injection
 - Physics of ion acceleration
- Comparison with the 17 April 2002 and 24-25 September 1998 Storms

17 April 2002 Magnetic Storm

Solar Wind H⁺ Ion Distributions in the Magnetotail

Summary

Plasma Population:

- Plasma sheet fills in with solar wind H⁺ ions gradually from dawn and dusk, with dominant entry occurring on dawn flank throughout the interval.
- O⁺ ions fill plasma sheet gradually, are 10% -20% of density throughout storm.

Summary

Plasma Injection

- SSC results in ion injection into inner magnetosphere at all local times for both H⁺ and O⁺.
- 0430 Substorm onset shows strong injection at dawn, gradual increase in density at midnight and dusk for H⁺ ions, very little change for O⁺ ions.

Summary

Plasma Acceleration:

- 28 October 2001 Ion velocity distribution functions show energization spreading from midnight to dusk and entry of solar wind ions from the dawn flank.
- Energization for both 24 September 1998 and 17 April 2002 storms more dramatic:
 - Stronger dynamic pressure
 - Highly variable IMF during the SSC.

A Word About Forecasting

- "Geoeffectiveness" of magnetic storms in accelerating ions cannot be characterized by Dst alone:
 - Solar wind dynamic pressure and IMF B_y and B_z fluctuations more important.

• Any remote sensing of a magnetic cloud must be able to tell us about the characteristics of the IMF within the cloud, especially along its leading edge.

