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Key Points:17

• Four gamma-ray enhancements were observed at two locations 1.35 km apart along18

the wind direction, and their time profiles were analyzed.19

• Termination of three of them was also recorded. The last one was associated with20

a downward TGF and a negative energetic in-cloud pulse.21

• The acceleration region of gamma-ray glows in a thundercloud can develop within22

a few minutes after experiencing a discharge.23
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Abstract24

Around 17:00 on January 12, 2020 (UTC), radiation detectors installed at two locations25

with a 1.35 km separation in Kanazawa City, Japan, captured a total of four gamma-26

ray enhancements. The first pair was simultaneously observed at the two locations at27

17:03, and were abruptly terminated by a lightning discharge. The remaining two en-28

hancements were also nearly simultaneously observed ∼3 minutes later, and one of them29

was also terminated by another lightning discharge. At the last termination, a downward30

TGF and a negative energetic in-cloud pulse were observed. Both pairs were associated31

with thundercloud cells. In the first pair, simultaneous detection in two locations 1.35 km32

apart suggests either a gamma-ray glow emerged in-between and time variability of its33

intensity were directly observed, or there were two (or more) gamma-ray glows in the34

cell which reached the two detectors coincidentally. In the latter pair, the peak time in35

the downwind detector was ∼40 s later than that of the upwind detector. If the irradi-36

ation region moved with the cell, it would have taken ∼ 110 s. The discrepancy suggests37

either the glow moved 2.5 times faster than the cell, or there were two (or more) glows38

in the cell. Also, the fact that the thunderstorm cell hosting the latter glows experienced39

the lightning discharge ∼3 minutes before suggests that the strong electric field in the40

cell can develop within a few minutes.41

Plain Language Summary42

Thunderclouds sometime emit gamma rays with a duration of minutes, which are43

called “gamma-ray glow”. It is bremsstrahlung emission from high-energy electrons ac-44

celerated in the cloud. At around 17:00 (UTC) January 12, 2020, two radiation detec-45

tors installed 1.35 km apart in Kanazawa City, Japan, captured a total of four count rate46

enhancements. The first two disappeared with a lightning discharge, and the last one47

with another lightning, in this case accompanied by an intense gamma ray flash called48

a “downward terrestrial gamma-ray flash” (TGF). The overall behavior is similar to an-49

other gamma-ray glow observed in the same location on January 2018 (e.g. Wada, Enoto,50

Nakamura, et al., 2019). This is also the third report of gamma-ray glow termination51

associated with both lightning discharges and TGFs. However, while the 2018 event can52

be explained well by assuming that the electron acceleration region moves with the thun-53

dercloud cell (monitored by rainfall map) and then terminated by a lightning discharge,54

the time profiles of the four current events cannot. To explain the behavior of the 202055

data, new models such as electron acceleration region(s) rapidly emerging in a thunder-56

cloud cell, and/or multiple electron acceleration regions co-existing in a single cell, are57

discussed.58

1 Introduction59

Parks et al. (1981b) and McCarthy and Parks (1985a) captured a phenomenon of60

X-ray intensification during a passage of a thundercloud using an aircraft-mounted X-61

ray detector for the first time. Balloon experiments by Eack et al. (1996) observed sim-62

ilar X-ray emissions. These observations were followed by further aircraft (e.g. Kelley63

et al. (2015); Østgaard et al. (2019); Kochkin et al. (2017, 2021)), balloon (Eack et al.,64

2000), and ground-based observations (e.g. Torii et al. (2002); Chilingarian et al. (2010);65

Tsuchiya et al. (2007)), which detected not only X-rays but also gamma rays up to tens66

of MeV. These X- and gamma-ray flux intensifications have a duration ranging from tens67

of seconds to minutes, are associated with thunderclouds themselves, not with lightning68

discharges, and are now called “gamma-ray glows” (e.g. Kuroda et al., 2016; Wada, Enoto,69

Nakamura, et al., 2019), long bursts (e.g. Torii et al., 2009), and/or thunderstorm ground70

enhancements (Chilingarian et al., 2011). Besides gamma-ray glows, in 1990s, the Burst71

and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Ob-72

servatory detected gamma-ray emissions with a duration of a few milliseconds arriving73
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from the ground (Fishman et al., 1994). They are now called “terrestrial gamma-ray flashes”74

(TGFs) and are known to be synchronized with lightning discharges. Their average spec-75

tra have continuous shape up to > 10 MeV, and is now considered as the bremsstrahlung76

emission from electrons accelerated mainly via the relativistic runaway electron avalanche77

(RREA) mechanism (Gurevich et al., 1992). Spectra of gamma-ray glows are similar to78

those of the TGFs (e.g. Tsuchiya et al., 2007; Dwyer, 2012; Kochkin et al., 2021), and79

therefore the RREA mechanism is also considered to be applicable to it. However, in-80

tensity of some of the brightest glows cannot be explained solely by this mechanism (Kelley81

et al., 2015; Wada, Enoto, Nakamura, et al., 2019), and a further amplification process82

such as relativistic feedback (Dwyer, 2003, 2012) is needed.83

The region along the Sea of Japan is famous for its winter thunderstorms. Low-84

altitude cloud bases of winter thunderstorms (typically 0.2–0.8 km, Goto and Narita (1992))85

make the region a good place for ground-based observations of gamma-ray glows and down-86

ward TGFs, as gamma rays are less likely to be attenuated compared to summer thun-87

derstorms with high-altitude charge-center, before reaching the ground. We have con-88

ducted the Gamma-Ray Observation of Winter Thunderclouds (GROWTH) experiment89

in this region since 2006 (e.g. Tsuchiya et al., 2007; Yuasa et al., 2020), and continuously90

observed gamma-ray enhancements of tens of seconds, which are thought to be originat-91

ing from gamma-ray glows (e.g Tsuchiya et al., 2011, 2013; Wada et al., 2018). In ad-92

dition, < 1 ms short-duration on-ground radiation flashes coincident with lightning dis-93

charges, which can be interpreted as TGFs aiming at the ground (or “downward TGFs”),94

have been detected. They are also sometimes associated with emission with a duration95

of a few hundred milliseconds (called “short bursts”) (Enoto et al., 2017; Bowers et al.,96

2017; Wada, Enoto, Nakazawa, et al., 2019). Enoto et al. (2017) and Bowers et al. (2017)97

revealed that TGF photons produce neutrons via photonuclear reactions with atmospheric98

neuclei, and the short bursts originate from de-excitation gamma rays of neutron cap-99

tures generated through the reaction.100

Association with lightning discharge is confirmed in all downward TGFs reported101

in this region (Enoto et al., 2017; Bowers et al., 2017; Wada, Enoto, Nakazawa, et al.,102

2019; Wada, Enoto, Nakamura, et al., 2020, 2019). This fact make them distinct from103

the fare weather Extensive Air Shower (EAS) events recorded in high-altitude cosmic104

ray observatories (e.g. Bowers et al., 2021). In some downward TGF cases, a character-105

istic bipolar radio waveform with high peak currents (>100 kA) called an “energetic in-106

cloud pulse” (EIP) has been observed in the low frequency radio band (0.8–500 kHz, Wada,107

Enoto, Nakamura, et al., 2020). EIP has also been observed coincident with TGFs de-108

tected by in-orbit satellites, and is likely to be related to at least some of the origins of109

TGFs (Lyu et al., 2015; Østgaard et al., 2021).110

One of the mysteries on gamma-ray glows is that they last for more than a few min-111

utes. Strong electric fields accelerating electrons are considered to exist in thunderclouds.112

According to the RREA process, even small changes in electric-field strength can vary113

multiplication factor of electrons by orders of magnitudes (e.g. Dwyer and Smith (2005)).114

Nonetheless, gamma-ray glows seem to have a stable photon flux and move with ambi-115

ent wind (e.g. Torii et al., 2011). We have installed more than ten gamma-ray detectors116

at 1-3 km intervals on the ground and have observed an increase and decrease in gamma117

rays as thunderclouds are swept away by the wind. Since the size of the irradiated re-118

gion of the glows is typically a few hundred meters (Wada, Enoto, Nakamura, et al., 2019),119

a gamma-ray glow can be seen by a single detector only for a few tens of seconds with120

a typical wind velocity of 10–20 m s−1. Therefore, it is difficult to follow the time evo-121

lution of gamma-ray glows with a single detector.122

Terminations of gamma-ray glows synchronously with lightning discharges have of-123

ten been observed (e.g. Chilingarian et al., 2017; McCarthy & Parks, 1985b; Parks et124

al., 1981a; Eack et al., 1996; Eack & Beasley, 2015). One of these was detected by Wada,125

Enoto, Nakamura, et al. (2019, 2020) in January 2018. A gamma-ray glow following the126
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wind moved over two detectors 1.35 km apart, and a lightning discharge caused the glow127

to cease in the vicinity of the downwind detector. They confirmed that the glow was dis-128

rupted coincident with a downward TGF and an EIP. Association of TGF and glow is129

also suggested by Smith et al. (2018) in another location near Kanazawa city.130

In this paper, we report gamma-ray glows observed in January 2020 at the same131

location as Wada, Enoto, Nakamura, et al. (2019). While apparently similar to the Jan-132

uary 2018 event, this event in January 2020 is characterized by a more complex tempo-133

ral variability.134

2 Observation & Methods135

From 2006, our GROWTH gamma-ray detectors were deployed at the Kashiwazaki-136

Kariwa Nuclear Power Station in Niigata Prefecture, and gamma-ray glows were observed137

(Tsuchiya et al., 2007, 2011, 2013). In 2015, we established another observation site in138

Kanazawa city, Ishikawa Prefecture, and started the multiple-point observation campaign.139

One of the main objectives is to investigate the time evolution of gamma-ray glows, which140

is thought to move with thunderclouds (Torii et al., 2011). In the 2019–2020 winter sea-141

son, 20 detectors were deployed in this area.142

The detectors used in this study are the same as the ones used in Wada, Enoto,143

Nakamura, et al. (2019). Each detector has a 25×8×2.5 cm3 Bi4Ge3O12 scintillator read144

out with two photo-multiplier tubes (PMTs). Analog output is converted into digital sig-145

nals with 50-MHz sampling and processed by a field programmable gate array to obtain146

pulse height of each photon signal. The detectors record the pulse height and trigger time.147

It also records the minimum voltage value of the waveform to check analog circuit anomaly148

such as undershooting due to a large signal (Yuasa et al., 2020). Both of the detectors149

in the present paper are sensitive to the energy range of 0.4–20.0 MeV. Detector A is in-150

stalled at Izumigaoka High School (36.538◦N, 136.649◦E) and Detector B at Kanazawa151

University High School (36.539◦N, 136.664◦E).152

Broadband low-frequency (LF: 0.8–500 kHz) radio receivers have been deployed in153

the area to monitor lightning activities there (Takayanagi et al., 2013). Each station has154

a flat plate antenna and their analogue outputs are sampled by a 4 MHz digitizer. Tim-155

ing is calibrated with the GPS signals. The locations of the 7 stations that make up the156

array are shown in Supplementary Figure 3a of Wada, Enoto, Nakamura, et al. (2019).157

Pulse locations are obtained by the time-of-arrival method with the multiple LF anten-158

nae (Yoshida et al., 2014). Lightning data obtained by Japanese Lightning Detection Net-159

work (JLDN) operated by Franklin Japan, were also used. JLDN provides the location,160

peak current, and timing of lightning discharges.161

In order to study structure of thunderclouds during gamma-ray glows, we utilize162

data of the eXtended RAdar Information Network (XRAIN) operated by the Japanese163

Ministry of Land, Infrastructure, Transport and Tourism (MLIT). XRAIN is a dual-polarized164

radar network in the X-band (9.8 GHz), which measures the shape of raindrops and/or165

hails from the reflection intensity, and estimates the rainfall intensity in the observation166

area. In the analysis, we use the 1-minute-interval synthetic rainfall data obtained from167

the Nomi XRAIN radar site, located 18 km southwest from Detector A. It is synthesized168

using the scan of 1.7◦ and 3.6◦ elevation angles, which corresponds to ∼ 530 m and ∼169

1.1 km altitude around our gamma-ray detectors, respectively.170
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3 Data Analysis171

3.1 Detection of four enhancements in gamma-ray count rates172

Shortly after 17:00, January 12, 2020 (UTC, or 02:00 on January 13, JST; here-173

after, all time information is in UTC), we observed a total of four count-rate enhance-174

ments with Detectors A and B.175

We use the XRAIN synthetic rainfall contours to determine the wind direction and176

speed by tracking the movement of the thundercloud cells near the detectors around the177

event detection time. The estimated wind direction and speed are 246◦ (clockwise with178

respect to north: wind from west-southwest toward east-northeast) and 14.2±1.2 m s−1,179

respectively. Therefore Detector A was located almost upwind of Detector B. See Ap-180

pendix A for detail.181

Figure 1 shows the time variation of count rates recorded by Detectors A and B182

in the energy band of 3–20 MeV. This energy band in not affected by the radon-decay-183

chain nulcei variable with precipitation. At around 17:03 and 17:05–17:07, each of the184

detectors captured two gamma-ray count-rate enhancements: A1 and A2 by Detector A185

and B1 and B2 by Detector B. Here we define t = 0 s at 17:06:59, and the “enhance-186

ment” when the count rate is continuously exceeding 12 counts s−1, which corresponds187

to ∼ 2 σ above the background count rate of ∼ 6.6 counts s−1. The A1 and B1 events188

started to rise at around 17:02:50 (t = −250 s) and 17:03:03 (t = −237 s), respectively,189

brightened by ∼30 s, and then suddenly terminated at 17:03:23 (t = −215 s). The A1190

and B1 events seemed to be simultaneously initiated and terminated at a distance of 1.35 km191

(the distance between Detectors A and B). The A2 event occurred from 17:04:54 (t =192

−125 s) to 17:06:09 (t = −50 s) with a duration of ∼70 s. The B2 event started at 17:05:19193

(t = −100 s) and continued for ∼100 s, and then terminated at 17:06:59 (t = 0 s). The194

peak time of B2 is 17:06:09 (t = −50 s), which is ∼40 s after the peak time of A2. In195

Figure 1, the discharges coincident with the interruption of the A1/B1 event and the B2196

event are named the L1 discharge and L2 discharge, respectively. Energy spectra of the197

four enhancements are typical of those observed and reported by the GROWTH exper-198

iment, which were well explained by bremsstrahlung gamma rays from electrons gener-199

ated via RREA process (e.g. Wada, Enoto, Nakamura, et al., 2019).200
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Figure 1. The upper and lower panels show the 1-sec-binned time variation of count rates

of Detectors A and B, respectively, in the energy range of 3–20 MeV. Error-bars are for ± 1 σ,

throughout this paper. The time origin is the moment of the TGF coincident with the L2 dis-

charge. The red arrows indicate the time of the lightning discharges L1 and L2, the solid and

dotted green lines the peak positions of A2 and B2 events respectively, and the dashed magenta

line shows the expected peak time at Detector B, assuming that the irradiation area of A2 moves

with thundercloud cell.

We analyzed the synthesized rainfall map obtained by XRAIN. Like many other201

gamma-ray glows observed in the region (e.g. Torii et al. (2011); Wada, Enoto, Naka-202

mura, et al. (2019); Wada et al. (2021)), the gamma-ray enhancements were observed203

when the heavy rain region is located near the detectors. The rainfall distribution at 17:02–204

17:03, which includes the time when the A1 and B1 enhancement events occurred, are205

shown on the left panel of Figure 2. There are two regions with rainfall exceeding ∼ 15 mm h−1.206

We identify them as “thundercloud cells”. One with a size of ∼ 4 km diameter was lo-207

cated around the detectors (named Cell-1), and another larger one to the southwest (Cell-208

2). Detectors A and B were beneath the east-west elongated heavy rain peak area of Cell-209

1. The map at 17:06–17:07 corresponding to the A2 and B2 enhancement events is also210

shown on the right panel of Figure 2. Cell-2 has moved near Detectors A and B at this211

moment. Although the rain activity is a little decreased, both detectors are still under212

strong rain exceeding ∼ 15 mm h−1.213
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Figure 2. Two-dimensional view of one-minute rainfall contour map by XRAIN rainfall

radar at 17:02–17:03 (corresponding to −298 < t < −238 s) and 17:06–17:07 (corresponding

to −59 < t < 1 s). Both are synthesized from the 1.7◦ scans. Overlaid red-plus and magenta-

cross marks are the positions of lightning discharges identified by JLDN and the LF network (see

text for detail), respectively. Those in the 17:02–17:03 panel corresponds to the timing of the L1

discharge, while those in 17:06–17:07 panel corresponds to the L2 discharge.

Typical localization error of JLDN is reported to be 310 m (Matsui et al., 2020). The orange

markers show the position of the radiation detectors A and B.

3.2 Downward TGF and short burst214

At the time of the B2 event termination, both Detectors A and B recorded a down-215

ward TGF followed by a ∼ 100 ms decaying emission (or “short burst”). Figure 3 left216

shows time series of the maximum (black dots) and minimum (red dots) voltages of pho-217

ton event waveform. There are a few photon events recorded with maximum voltage of218

∼4.7 V at t = 0 s, which is at the saturation level of the analog circuit. Immediately219

after that, the analog circuit experiences a significant undershoot for a few milliseconds.220

These are signatures of a large number of gamma-ray photons coming in a short period,221

as reproduced well by LED irradiation experiments using the same PMT and analog cir-222

cuit (see section 4.2.4 and Figure 4.19 of Wada (2021)), and hence evidence of a down-223

ward TGF (see Enoto et al., 2017). Figure 3 right shows the time variation in count rates224

with the 10-ms bin. The time variations characterized by fast rise and exponential de-225

cay are observed in both detectors.226

The count rates decay and disappear within ∼ 100 ms. Its overall behavior resem-227

bles those of the simulated TGF-originated neutron signals as shown in Figure 5 of Bowers228

et al. (2017) and Figure 9 of Wada, Enoto, Nakazawa, Odaka, et al. (2020a). Therefore,229

the time variations of count rates can be interpreted as gamma rays originating from neu-230

trons generated by photonuclear reactions (Enoto et al., 2017; Wada, Enoto, Nakazawa,231

Odaka, et al., 2020b; Wada, Enoto, Nakazawa, Yuasa, et al., 2020). The B2 event was232

terminated with the occurrence of the downward TGF. This is the third case of the si-233

multaneous detection of glow-termination and a downward TGF, following those reported234

by Smith et al. (2018) and Wada, Enoto, Nakamura, et al. (2019). At the timing of L1,235

none of our detector recorded a strong signal.236

At the termination of the A1 and B1 events, JLDN detected four radio pulses of237

a lightning flash (L1) in 200 ms, as summarized in Table 1. Since they occurred within238

a radius of 4 km from both detectors with peak current of negative 5–12 kA, they are239

considered to be the cause of the termination of A1 and B1 events. Also, when the B2240
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Figure 3. Diagram of the downward TGF and the photonuclear reactions coincident with the

L2 discharge. Black and red dots in the left panel show time series of the maximum and min-

imum values of photon-event waveforms at the moment of the L2 discharge, respectively. The

right panel presents 10-ms-binned count-rate histories. The time origin is set to be the detection

time of the downward TGF coincident with the L2 discharge.
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event was terminated and a downward TGF occurred, JLDN detected two radio pulses241

of another lightning flash (L2), both located within 2 km from the two detectors. The242

first radio pulse (JLDN pulse 8 ) coincided with the downward TGF recorded by Detec-243

tors A within ∼ 5 µs. GPS of Detector B was locked-off at the moment, and we can just244

state that its timing is consistent with the pulse within ∼ 100 µs uncertainty. Accord-245

ing to the JLDN report, JLDN pulse 8 had a large negative peak current of 122 kA.246

Table 1. JLDN reported discharge information.

Pulse ID Time (UTC) Location Peak current note

1 17:01:22.16521 (36.530◦N, 136.622◦E) −13 kA
2 17:01:22.18520 (36.541◦N, 136.626◦E) 22 kA
3 17:01:22.31134 (36.540◦N, 136.627◦E) 19 kA
4 17:03:23.80842 (36.540◦N, 136.671◦E) −12 kA L1
5 17:03:23.81123 (36.553◦N, 136.633◦E) −10 kA L1
6 17:03:23.83458 (36.532◦N, 136.666◦E) −5 kA L1
7 17:03:24.00174 (36.534◦N, 136.670◦E) −12 kA L1
8 17:06:59.05044 (36.529◦N, 136.658◦E) −122 kA L2
9 17:06:59.05598 (36.529◦N, 136.660◦E) 9 kA L2

Figure 4 shows radio-frequency waveforms of the lightning discharges recorded by247

the broadband LF observation network. The data was recorded by one of our LF anten-248

nae, installed in Himi City, Toyama Prefecture, Japan (36.938◦N, 137.025◦E). The top249

panel of Figure 4 covers the duration of the L1 lightning flash. Pulse identification by250

JLDN is also shown. The middle panel covers those of the L2 flash, and the bottom one251

gives the enlarged view of the LF waveform corresponding to JLDN pulse 8 . The wave-252

form in the last panel has a similar characteristics as the radio pulse coincident with the253

downward TGF reported by Wada, Enoto, Nakamura, et al. (2020) and its peak current254

reported by JLDN is larger than negative 100 kA. Based on the definition of Lyu et al.255

(2015), the pulse duration was estimated to be 85 µs. Since the LF pulse has a longer256

duration than that of typical narrow bipolar events and is isolated from other LF activ-257

ities, it can be classified as a negative EIP. Close up of the LF waveform of the timing258

corresponding to all the six JLDN pulses included in L1 and L2 are shown in Appendix259

B.260

Figure 2 shows the location of the LF radio pulses in the lightning flashes L1 and261

L2. For both L1 and L2, the LF pulses are located in the thundercloud cells correspond-262

ing to the A1/B1 (Cell-1) and A2/B2 events (Cell-2) , respectively. No lightning discharges263

were recorded by JLDN and the LF networks for the 3.5 minutes between L1 and L2.264

4 Discussion265

Here we discuss the possible geometries of the gamma-ray glows causing the gamma-266

ray count-rate enhancements. The A1 and B1 enhancement events were terminated by267

the L1 discharge. Since Detectors A and B are 1.35 km apart, there are two possibili-268

ties for simultaneous enhancement detection at two sites. One is that there is a single269

gamma-ray glow that is so wide that it covers two detectors 1.35 km apart at the same270

time. Previous observations of gamma-ray glows during winter thunderstorms in Japan271

suggested that gamma-ray glows are moving with thunderclouds (precisely, with rain-272

fall regions; see Wada, Enoto, Nakamura, et al. (2019); Yuasa et al. (2020); Torii et al.273

(2011)). However, in the present case, since the ambient wind is heading from Detector A274

to B, Detector A should observe the gamma-ray enhancement ∼110 s earlier than De-275

tector B, if the gamma-ray glow has small variance of the flux in time. This does not276
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Figure 4. LF waveforms captured by the Himi station at the time of the lightning discharges.

The top and middle panels present the 250 ms long overall waveform of L1 and L2, respectively.

The orange dotted lines represent the timing of the JLDN pulses. The time origin of the top

panel is the JLDN pulse 4 , and that of the other two panels is JLDN pulse 8 . The bottom panel

presents the close-up (0.5 ms wide) view for the LF pulse corresponding to JLDN pulse 8 . The

propagation delay between the LF station and the lightning location (∼ 55 km) is 0.18 ms and

corrected in this figure.
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match the observation results. To explain the simultaneous emergence of the A1 and B1277

events in Detectors A and B, one idea is to assume that acceleration region just started278

building up at around t = −250 s, and the quick rise of the gamma-ray count rates are279

mainly the result of the increase in its intensity, rather than the gamma-ray glow move-280

ment with the thundercloud cell. If the accelerator was located in-between Detectors A281

and B, its size will be ∼ 1 km wide, which is not much different from that of the known282

typical gamma-ray glows in this region.283

The other possibility is that two (or more) acceleration regions, namely multiple284

gamma-ray glows, existed independently near Detectors A and B at the same time. As285

shown in Figure 2, at 17:02–17:03 (close to the time when the A1 and B1 events occur),286

the peak of the heavy rain region is elongated east-west in Cell-1. The two (or more) ac-287

celeration regions placed in its western and eastern ends, which are actually slightly peaked,288

will be able to explain the two enhancements. With the lightning L1 with four negative289

current pulses, the electric field within Cell-1 overall could have been decreased signif-290

icantly. If the electric field becomes less than the RREA threshold value ∼ 285 kV m−1
291

(e.g. Dwyer, 2012), electron acceleration ceases. Therefore, a discharge can halt the two292

(or more) acceleration regions at the same time.293

Regarding the A2 and B2 enhancements, the peak timing of B2 is about 40 s af-294

ter that of A2. The distance between the two detectors is 1.35 km and the azimuth an-295

gle of Detector A seen from Detector B is 275◦ (clockwise from the north), only 29◦ off-296

set clockwise from the wind direction. Using the wind speed and direction estimated by297

XRAIN, the peak of the B2 event is expected to come 109±10 s after the peak of the298

A2 event if originating from an identical gamma-ray glow moving along with Cell-2. This299

estimated peak time is shown by the magenta dotted line in Figure 1. However, the ac-300

tual peak time is about 40 s after the peak time of A2 as shown by the green dotted line,301

which is inconsistent under the assumption. One possibility is that the acceleration re-302

gion was moving 2.5 times faster than the overall thundercloud, an idea that is very new303

and needs detailed investigation in future. Another possible scenario is that, in addition304

to the acceleration region causing A2, another acceleration region existed (or suddenly305

emerged) in the thundercloud Cell-2, and caused the B2 enhancement. The first one dis-306

appeared with discharge L2, before reaching near Detector B. The third scenario is a complex-307

shaped gamma-ray irradiation area, which may have passed over two detectors in sequence.308

In fact, this scenario is not much different from the second one assuming multiple ac-309

celeration regions. To unambiguously distinguish among these models, more detectors310

are needed to be located in between Detectors A and B.311

Wada, Enoto, Nakamura, et al. (2019) reported that the gamma-ray glow observed312

in the same location on 9 Janauary, 2018, can be well explained by the picture that it313

moved along with a thundercloud cell, passed over Detector A on the upwind, and dis-314

appeared with a lightning discharge when located above Detector B. In addition, by an315

observation with 10 detectors, Torii et al. (2011) also explained another glow with the316

picture that its irradiation area moved along with the wind while roughly maintaining317

its shape and size. Therefore, gamma-ray glows reported in this paper are clearly dis-318

tinct from those results, indicating that either there is a case that the acceleration re-319

gion does not follow the thundercloud cells’ movement, or the glow intensity can increase320

as fast as ∼ 30 seconds, and/or multiple acceleration regions exist and/or emerge in a321

single thundercloud cell.322

As in Figure 1, at the moment of the A1 and B1 termination, LF pulses were de-323

tected in the thundercloud Cell-1 as well as Cell-2. Wada et al. (2018) observed that dis-324

charges (observed as LF pulses) passing right above the gamma-ray detector located at325

Suzu region have terminated the corresponding gamma-ray glow. In the same way, elec-326

tric fields in Cell-2 can be significantly reduced by the L1 discharge. However, Cell-2 hosted327

the A2/B2 events 3 minutes after the A1/B1 termination and the L1 discharges, and then328
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resulted in the L2 discharges. Therefore, it is suggested that the electric field of Cell-2329

should have been regained rapidly within 3 minutes.330

5 Conclusion331

Analysis of four gamma-ray enhancements detected by two detectors in Kanazawa332

city on January 12, 2020, suggested that there are either electron acceleration regions333

which suddenly emerge with ∼ 30 s timescale, regions not moving along with thunder-334

cloud cells, or the existence of multiple adjacent acceleration regions within a single thun-335

dercloud cell. The observation result is different from the picture that a single electron336

acceleration region was moving along with thundercloud cell, as previously reported by337

Torii et al. (2011), Wada, Enoto, Nakamura, et al. (2019) and Yuasa et al. (2020). The338

gamma-ray glows were terminated by lightning discharges, one of which coincided with339

a downward TGF associated with an LF radio waveform typical of negative EIP. It is340

also suggested that the electron acceleration region revives quickly after the lightning341

discharge within ∼ 3 minutes.342

Appendix A XRAIN precipitation radar images and wind direction/speed343

estimation344

In Figure A1, precipitation maps obtained by XRAIN in one-minute intervals are345

presented for 10 minutes duration. Original data can be obtained from DIAS service (https://diasjp.net,346

which was then supported by the University of Tokyo, and from April 2021, by JAM-347

STEC). Applying the method presented in the “Wind estimation with X-band radar”348

section of “Method” in Wada, Enoto, Nakamura, et al. (2019) to this precipitation im-349

ages, we determined the wind direction and speed as 246◦ (clockwise with respect to north)350

and 14.2±1.2 m s−1, respectively. The wind was blowing from west-southwest, and De-351

tector A was located almost upwind of Detector B. In the figures, nine lightning discharge352

locations from JLDN recorded within this 10 minutes (see Table 1) are also plotted (while353

those of the LF arrays are not shown for simplicity).354

Appendix B Close up views of LF waveform355

In Figure B1, we present the close up LF waveforms of the six pulses recorded at356

the Himi station, corresponding to the timing of four and two JLDN pulses included in357

the L1 and L2 flashes, respectively.358
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Figure B1. Enlarged LF waveform of JLDN pulses 4 to 9, obtained by the station located in

Himi City. The time origin is the moment of JLDN pulse 4 and JLDN pulse 8 for the L1 and L2

flashes, respectively.
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