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,C.X.APYTIDHHH,A.A.q]~HrAPHH 

0 BOSMOJKHOCT~ AHAM18A MHOrOMEPHO~ KIIHEMATWJECKOul 

, IIH'I>OPMAUilll C llOMOillhiD KEG OUEHOK PASMEPHOCTIA 

B pa60T8 OITMChlB88TCfl HOBhlM M8TO~ aHallMaa MHO*BCTB8HHhlX KO­

HeqHhlX cocroRHM~ E WHaHKe BhlCOKvtx SHeprHU. Mero.n; He rrpereH~eT 

Ha IT011H08 BbiHBJI8HH8 ,ZUiHaMHRH peaKIUUIJ Jii OITp8,li;8Jl8HJII8 M8CC VI illvtpHH 

peaoHaHCOB. OH MO*BT 6ur:o peKOMBHADBaH ~nH npe,n;Bapvtren:oHoro 
aH8JIJII38 C06biTM~ C 60JI:OUIO!ii MH01K8CTB8HHOCT:&JO H CITOC068H ,li;8T::b 

yKaaaHJII8 Ha cymeCTBOB~HH8 paanHqHhlX CBR3aHHhlX COCTORHJIIM. MeTO,ll; 

IT03B01IR8T ITpOJII3BO,li;JIIT:O ABYXM8pH08 DT06pa1K8Hvt8 MHOrOMepHb~ AaH­

HhlX, qTQ 0C068HHO B81KH0 ITpvt AJII81IOrOBOM pe~M8 06pa60TKJII ,n;aHHb~. 

B pa6DT8 HCITOJTh30BaHbl H0Bb!8 aJirOpHTMbi OITIJ8,Z1,8Jl8HHl'I KOppeRHl.I,HOH­

HOti pa3M8pHOCTH, Ha OCHOB8 KEG Oil,8HOK MHDrOM8pHOti ITJIOTHOCTH 

BepOfiTH6cTH. 8TH an.ropHTMbi Donee y;n.o6Hbi H TDl.fHbi B cpB.BHemm c 

paHee rrpe;D,JIO~eHHhlMH 1 113-33 BBe~eHHH 8CTeCTB8HHOrO MaCillTa6a H 

yqera WYHKUHH pacnpe;n.eneHHH KOppenHUHDHHoro HHTerpana. Pa60TO­

crroco6HocTD anropHTMOB rrpOBepeHa B CepHM Bbil.{HCJIHT8JIDHhlX 3KCITe­

pWM8HTOB C MOHT8-KapJIO peaJIH3SUHHMM npOU8CCa a;n,pOHOpD*~eHHH. 

EpeBaH I988 
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A new method of analysis of multiple final states in high 

energy physics is described. It can be recommended for preli­

minary analysis of events with high multiplicity and is able 

to make indication at the existence of various bound states. 

The method allows to perform two-dimensional mapping of multi­

dimensional data, this being particularly important in the 

dialog mode of data handling. New algorithms are used for the 

determination of correlatioQ dimensionality, based on KNN es-

timation of probability density. These algorithms are more 

suitable ard precise as compared to earlier suggested ones, 

due to the introdUced natural scale and the account of the 

distribution function of the correlation integral. The algo­

rithms correctness is checked in a series of the Monte-Carlo 

hadroproduction simulations. 
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Introduction. 

Recently, a great success in the description of complex 

systems behaviour was achieved by using geometrical represen­

tations. The generalized dimensionality originally introduced 

by Reni L1) and applied by Grassberger and Procaccia for the 

analysis of chao'tic behaviour t2) proved to be highly fruitful 

in variOus applications, beginning from the description of 

crystal growth [3} and up to the analysis of star cluster (4] 

and quark-gluon plasma [5] • 

On the other hand, the development of Mandelbrot's ideas 

about the fractal character of the Nature [6] also gave rise 

to a new understanding of complexity in the physical experi­

ment. 

The kinematic information about high-multiplicity reactions 

sharply increases and simultaneously there enhance difficultieb 

as to detect so far unknown mechanisms of production of a 

given final state [7] • Effective mass· distributions do not 



allow to make any definite conclusion. 

All available information on the reaction is. embedded in 
the values of all possible random quantities induced by this 
reaction and measured in experiment. Events are concentrated 
in relatively small regions of phase apace. 

Essential inhomogeneity and complexity of the events pat­
terns in phase apace just brought us to the idea to use a 
fractal approach for the analysis of multiple production. 
Fractal set in a wide sense is a set whose structure is re­
lated to dimensionality [8] • Fractal analysis proves to be 
useful every time when the systems behaviour is characterized 
by attractivity. That fa, final states are grouped in some 
subspace called attractor, whose dimension is less than that 
of the initial phase space [9] 

It should be mentioned that there exi.st many different· de­
finitions of dimensionality and specific schemes to calculate 
them for finite sets [10] , most of which go back to the first 
genera~ization of the dimensionality notion by Hauadorf [11] 
However for cases important to physical experiments, most of 
these definitions are equivalent; therefore we'll prefer the 
methods allowing to obtain adequate estimates for large dimen­
sions of initial spaceo 

Strict mathematical defini tiona of dimerisiona as well as 
referen<?es to the appropriate references can .be found· in (12], 

Highly useful proved to be the approach worked out by Pro­
c~ccia et al. and L.Young [13,14] in the recent years, which 
a], lowed to generalize som~ most popular defini tiona of dimen­
sionality and create a numerical method of calculation. Note 



that the aim of t,he fract~ approach is not to equip us with 

a ready theory but to formulate empirical facts on a geomet­

~ical language (15] for a subsequent comprehensive analysis. 

1. Correlation Dimension snd Its Relation to KNN 

Estimation of Probability Density. 

Proc~ccie showed that there exists an infinite set of dif­

rerent dimensions characterizing an attractor: 

1 
~'1=0 

f.:m 
e-o 

(1) 

~he d-dimensione.l initial space where an attre.ctor arises is 

tivided into M(f) cubes (boxes, cells, bins •••• ), and in each 

)f them a probabilistic measure Pi. is determined. A cube vo-

ed • Q ltune is -v is an arbitrary real number. One can readily 

show that at ~- 0 the generalized dimension coincides with 

self similarity dimension: 

(2) 

where 6.MK is e. number of self-similar objects occurring at 

fragmentation of scale at a K -th step, self similarity di-

mension in turn is tightly connected with the Heusdorf dimen-

"ion: 

(J) 

.5 



where N is number of points on th~ attractor. 
Practically, dimension is determined as a slope of the 

straight line that connects M(e) and f in double-logarith-
mic scale. To do so, one, of course, should be given by a 

and calculate the relevant series {ei},i=1, ... K, K ~3 
series of values of { M ( f~)} - number of cells of the size 
fl wherein the points of the studied set had fallen. At 

the generalized dimension reduces to the information 
one: 

6 = fim fim 
e....,..o N-+oo 

M(t) 

L p,enp,jene 
i:=.1 • (4) 

Most important for the applied cases is a correlation dimen­
sion JD corresponding to the case: 

M(t) 

£><l=Z = £> = fim flm fn L p,' jene e-o N-00 i.=f · 
(5) 

The correlation dimension is significant, firstly, because it 
characterizes local structure.of the attractor, and secondly, 

' because, as will be seen further, it can readily be calculated 
for dimensions of the initial space d. >> 2 • The algorithm 
of direct counting. of cells is rather tedious and is applicable 
only for the case d ~ 2 Clearly, at d=10 and fragmentation 
of each axis by 10, already at the first step the number of 
cells amounts to 1010 , and certainly, it is impossible to 
create an adequate numerical method operating with such great 
arrays. 

One can see from (5) that the correlation dimension is de­
termined from the e dependence of the numbe~ of the set 
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points being within distance f • One should be given by the 

values of { ei} and estimate for each of them so-called corre· 

lation integral (numerator of formula (5)). In Refs. [16,17] 

further simplifications ·of formula (5) are suggested. USing 

ergodic theorem one can make a replacement: 

Mte) N 

"' 2 1 "-L- p, =N ?- Pj 
t:::: 1 J;: 1 

(6) 

where pj is the probability to find the point of the studied 

set not simply on the attractor but inside the hyperball o! 

radius e ' with a centre a:t some other point of the studied 

set. 

Further, analyzing formulae (1), (5), (6), we can show that 

the correlation integral C (f) is simply equal to average 

number of points inside i1yperballs of radius e with centres 

at the points of the set. And for numerical calculation of the 

correlation dimension the following relation is used: 

qe) - e.v (7) 

Calculating the values of the correlation integral for several 

( ~ 3 ) values of e , we can estimate.JV as a slope of the 

straight line connecting· c(e) and e in double-logarithmic 

scale. Numerical calculations are carried out for a fixed 

series { ej } However there are no 

instructions regarding the_ choice of these parameters. 

We'll try to overcome this drawback ana, by introducing 

some natural scale, to remove uncertainty in the choice of 

7 



Let us i-epla:ce in formula (7) e by R.,; , where Rt<. ·is 

the set-averaged distance to the K -th nearest neighbour 

(KNN); so we obtain 

Notice that the left-hand side is equivalent to the average 

number of the set points being inside the hyperball With a 

(8) 

radius equal to the average distance to the K -th neighbour, 

i.e. equal to the number 

(9) 

Hence, the modified algorithm determines £J as a slope of 

K dependence of RK in double-logarithmic scale over several 

values of { Kj J (we usually take K.j;. 3,4, ... X 

the study of N dependence of K in nonparametric estimation of 

prObability density is presented in Refs. [18,19]). 

T~us, we introduced a natural scale - average distance to 

the nearest neighbour - and obtained a relation between the 

values of N and K parameters. As will be seen below from the 

results of simulations, the choice of { Kj} values contrary 

to {E;} is not too critical relative to the shift and 

spread of obtained values. 

2.· KNN Estimation of Probabil~~J;y Density. Local and Global 

Estimations o~ Dimension. 

Consider nonparametric KNN estimation of probability densi'ty 

~hich is a development of simple-histogram methods [20,21] 

8 



K 

N. VK,N (l<t) (10) 

where vK,N (Xi) is a volume of .iJ- -dimensional hypersphere 

containing the nearest to Xi representatives of the studied 

set: 

(11) 

From (10) and (11) we can readily obtain (see [22] ): 

I . • ·'/3J 
en R.,H(X<J=:r-enK + fn[N·V3JPK,N(Xt)] (12) 

Eq.(12) cannot be solved relative to 31 , since P(xi) de-

pend on K Therefore, we perform averaging of RK,H over 

the whole set according to the distribution function: 

f..x (R) = C£lR 
.,_, 

exp tc R") P C1Jl 

where C = NP(x)V., 

.Replacing the mathematical expectation value by sampling 

average (or median) w~'ll obtain in the approximation of small 

R and large N the following equation: 

1 
fn G.,., + fn RK,N = :i; en K + c ' 

G.,lll = K'1"r(K)jr(K+ 1/£l), (14) 

9 



The d'ifference of (14) from (7) and (9) consists in the so-

called iterative addition, GK,d , which is close to zero 

for all K and £J • Therefore we solve Eq.(14) iteratively, 
A 

first assuming GK,ll ::; 0 , and then, having obtained .lt)i. 
A 

end determine a new value of ~l +i 

We'll stop the iterative process, when change practicaily no 
A 

longer takes place. Such verification of ~ estimates is 

connected with averaging of the correlation integral. 

The correlation integral equivalent to the number of the 

set points inside the hypersphere of radius R K 1H is a random 

quantity having binomial distribution with parameter P (}(i) 

- the probability for the point to fall into this hyperball. 

In the approximation of small R and large N this distribu­

tion is well-approximated by the Poisson distribution (13). 

Thus, we obtained the method of estimation of dimension for 

the finite set of experimental events, and we'll apply it to 

the analysis of multiple reactions. NotiGe that we obta~ed a 

global' estimate, .i.e. the whole set is characterized by a 

unique number, although local differences are possible in it. 

From thi·s point of view, iocal estimation of dimension is much 

more interesting to uS, since in this way we'll be able to 

extract local inhomogeneities corresponding to various dyna­

mical mechanisms and, possibly, to isolate resonance ~reduction 

on the .backgrolUld of inv8.riant phase volume. 

Consider Eq.(12) again. Apart from the set averaging, there 

is alsO another possibility to get linear equation for the de­

termination of dimension. To do so, we should choose { K_l} 

such that the density estimates would be very close, and bence 

10 



A 

the dependen~e of PK.N (Xt) on K 

1~ these chosen values of { Ki,} 

could be ignored. FolloW­

and corresponding {Rt<j (X.1.)} 

qe'll determin<e estimates of local dimension at a point Xi • 

Such estimates of density depend on dimension; it is necessary 

to organize the iterative procedure, i.e. for the current esti• 

mates of dimension we '11 choose again the series { Kj} cor­

responding to close values of denSities and so on. We'll inter­

rupt the iterative process when the value of dimension will 

practically no longer change. Usually 2-3 iterations turn out 

enough to satisfy the condition I ~~+f -.f>t \ "- 0,01 

J. Results of Monte-Carlo Simulations. 

We applied our technique to many simple examples (Coch 

curve, Serpinsky carpet, Cantor set, etc.) and obtained esti­

mates being in good agreement (with account of limitedness of 

samples and generations) with theoretical values. 

The s~udies with Monte-Carlo simulations of multiple produc-

tion events were aimed at a comparison of "pure states'' - the 

resonance production events and the events when interactions 

between secondary particles are absent (I and II of Fig.1). 

Apart from that, the possibility of extraction of the resonance 

production events on the kinematic background was studied. 

We generated samples according to schemes 1 and 2 with res­

pect to resonant width and arbitrary momentum resolution • . 
Further, by formula ( 14), we determined dimension of the_ set 

Jf points for various values of par~eters K and N. Averag­

ing was performed over 10 independent samples. As is seen from 

Fig~ .. 2 and J, the. dimension crit.erion a.J.l.ows to distinguish 

11 



with high precision various dynamical mechanisms of final 
state production. The values of estimates are stable with res­
pect to the choice of the method parameters and the sampling 
volume of the order of 200 is sufficient for reliable recogni­
tion. The errors of estimates incxeaae with the growth of di­
mension, which agrees perfectly with the practice of multi­
dimensional statistics [23] • The errors decrease with growing 
N and K, and this testifies to the method validity and to de­
creased influence of fluctuations with growing sample size. 

Possible ways of the method utilization will.be discussed 
in the Conclusion, while here we'll mention a relation of ob­
tained characteristics to the number of degrees of freedom in 
the final state. By the known formula [24] N = }M-4, M is 
the number of particles in final state. For the resonance pro-
duction (II) N = 4, non-resonance (I) N = 8. Of course, 
the possibility to recognize "pure states" is of interest, but 
actually at large mult~plicit~es the final state is a mixture 
of various modes, and 1 t is ~u-St necessary to extract from the 
background the events corresponding to nontrivial dynamical 
mechanisms. W~ may assume that in such a mixture local inhomo­
geneities and clUsters can be observed, which have different 
dimension reflecting the production mechanis~. Therefore, the 
next step in our study was deter.mination of local dimension in 
a mixture of two "pure states" I and II. Fig .4 shows that the 
presence of resonance whose fraction decreased down to 20% 
clearly is an excess over background corresponding to non­
resonant production according to invariant phase volume. 

The iterative procedure began with the value J{ •25, then 

12 



we chose 5 median values of density (ordered statistics from 

10 to 14), dimension was determined by the relevant values o+ 

{ KjJ and {RKj(Xl)}"; then, with the new value of dimension 

we again determined densities, and so on, until the change in 

dimension was· less than 0.01. 

In this way we determined dimension for each event of the 

sample. 

The program uses fast-sorting algorithms [25] , therefore, 

time spent for obtaining dimension distribution is not much. 

Conclusion. 

We demonstrated that the proposed method of analysis of 

kinematic information of multiple production allowJ to recog­

nize 11 pure11 states - samples consisting o:f entir ly background 

process and resonance production. Besides, the local dimension 

distributions all_ow to extract the resonance production events. 

Thus we can judge also on a :fraction of corresponding channels 

o:f reaction. The method may be recommended for preliminary 

analysis of kinematic information. Further, combining it with 

the cluster analysis [26,27] and effective mass analysis one 

can determiDe besides the fact of existence of resonances 

themselves also their widths and masses. Algorithms of dimen­

sion analysis are rather simpl'e and fast and offer an opportu­

nity tO visualize mtilt~dimensional information. 

In conclusion the authors would like to express their sin­

o~re cratitude to H.R.Gulkanyan, S.G.Matinyan and G.K.Savvidy 

tor the u.etul .d1acuea1onsi to .T_s.A.Amatuni and G.Ranshall :for 



presenting programs. One of the authors (A.A.c.) is thankful 

to I.Dremin and I.Sokolov for the valuable remarks. 
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Figure Captions 

Fig.1. Comparison of global estimates of correlation 

dimension for two versions of obtaining a given 

final state. Dimension of initial space is 16. 

The number of degrees of freedom of version I is 8, 

of version II is 4. 

Fig.2. Dependence of average distance to the 

neighbour on K, by which the correlation dimension 

is determined. 

Fig.J. Determination of correlation dimension by different 

number of events of multiple production (version II). 

Fig.4. Local dimensions distribution for different 

proportions of the mixture of events of I and II type. 
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