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Ipenpunt EPM-I067(30)-88

,C. X APYTIOHAH, A. AL UNTETAPHH

Q- BOSMOEHOCTY AHAMM3A MHOTOMEPHO! KEHEMATUYECKOR
'HHCDOPMAIIHPI C ICMOWB0 KBC OUEHOK PASMEPHOGTH

B pafore ONMMCHBAETCHA HOBMi MeTOX AHATM3a MHOHECTBEHHMX KO-
HEUHLX COCTORHME B (M3NXe BHCOHMX 3HEPTMiA. MeTus He npeTeHpyer
HA TONHOE BHABNSHWE JMHAMAKN PEaKUAM M ONpeAeNeHNS Mace ¥ WUPUH
pesonadcoB. OH MOXeT OLTH DEHOMEHEOBAK AAA IpEISapATEIEBHOTO
2HANMEE COOHTHE ¢ GONBWOY MEOKECTBEHHOGTBO M CHOCOGEH Jars
yHasahne Ha CYLSCTBOBEHNE PARINYHHX CEASAHHNX COCTOAHMA. MeTon
MO3BONACT NPOMBBOAKTE ABYXMEpPHOE OTOCDANSHNE MHOTOMEPHMX AEH-
HHX, 4T0 OCOUEHHO Ba®HO DM EKATOIDBOM DEMMME 0GpAGOTKM AAHHHK.
B padoze HCHOHLSOB&HH‘HOBMG ALTCPUTME ONpefeNeHUs KOppelauy oH-
HOWl pasMepHocTH, HA ocHoBe HEC CileHOK MHOIOMEpHOR HAOTHOCTH
BepoATHOCTH, ITH aﬁropnTMu Gojice yAOOHH M TOYHH B CPABHEHUM C
DaHee NpeZNCKeHHHMM, M3-38 BBEJEHNA €CTECTBEHHOTO Macurada #
ydeTa QYHKIMM pacnpejsleHns KOPPEAALUMOHHOIO0 MHTEIpana. Pasoro-
CIIOCOSHOCTE AATOPHTMOB NPOBEPEHA B CEDUM BHUMCIMTE TLEHX SKCIE—

PHMEHECE C MOHTE-KADIO peanusanuaMy Ipouscca 8J4pOHOpOK LeHuA,

- EpeBaHcxuit ¢UsHUeCKUR HHOTHTYT

Eperan 1988
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ON THE POSSIBILITY OF MULTIDIMENSIONAL
KINEMATIC INFORMATION ANALYSIS BY MEANS
‘OF NEAREST NEIGHBOUR DIMENSICNALITY ESTIMATION

A pew method of analysis of multiple final states in high
energy physics is described. 1t can be recommended for preli-
minary analysis of events with high multiplicity and is able
to make indicetion at the existence of various hound states.
The method allows to perform two-dimensional mapping of multi-
dimensional data, this being particularly important in the
dimlog mode of dats handling. New algorithms are ugsed for the
determination of correlation dimensionality, based on KNN es-
timation of probability demsity. These slgorithms are more
suitable apd preciese as compared to earlier suggested cnes,
due to the introduced natural scale end the account of the
distribution function of the correletion integral. The algo-
rithms correctness is checked in & geries of the Monte-Carlo

hedroproduction simulations.
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Introduction.

Recéntly, a great success in the description of complex
systems hehaviour was achieved by using geometrical represen-
tations. The generalized dimensionality originelly introduced
by Reni [1] =nd appiied by Gressberger end Procaccia for the
‘analysis of chaotic beheviour [2] proved to be highly fruitful
in various applic;tiona, beginning from the description of
crystal growth [3] end up to the analysis of star clﬁster 14}
and quark-gluon plasma [5] .

On the other hand, the development of Mandelbrotts ideas
about the. fractal character of the Nature [6] 2180 gave rise
to & new understanding of complexity im the rhysical éxperi-
ment.

The kinematic information ahout high-multiplicity reactions -
gharply incresges and slmultaneously there enhance difficulties
as to detect so far unknown mechenisms of production of &

given finel state [7] . Effective mess distributions do not
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allow to make any definite conclusion.

All avaiiable information on the reaction is. embedded in
the valugs of all possible random quantities induced by thia
reaction and measured in experiment., Events are concentrated
in relatively amall regions of phase space, -

Egsential inhomogeneity and complexity of the eventas pat-
terns in phase space just brought us to the idea to use a

" fractal approach for the analysis of multiple production.
Fractal set in a wide sense im a set whose structure is re~
lated to dimensionelity [B] . Practal analysis proves to be
useful every time when the systems behaviour ig characterized
by attractivity. Thaet is, final states are grouped in some
subspace called atiractor, whose dimension is less than that
of the initial phese space [9] .

VIt should be mentioned that there exist meny different de-
finitions of dimensionelity and specific schemes to calculate
them for finite seta [10] , most of which go back to the first
generalization of the dimensionality notion by Hausdorf (1] .
However for cases important to physical experiments, most of
these definitions are equivalent; therefore we'll prefer the
methods allowing to obtain adequate estimates for lerge dimen-
sions of initial space.

Strict methematical definitions of dimersions as well ag
references to the approprimte references can be found in [121. -

Highly useful proved to be the approach worked out by Pro-
caccia et al. and L.Young [13,14] in the recent years, which
allowed to generalize soﬁg most popular definitions of dimen-~

8lonality end create g numerical method of calculation. Note
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that the aim of the fractal approach is not to equip us with
s ready theory but to formulete empirical fects on & geomet—

rical lengusge [15] for =& subsequent comprehensive analysis.

1, Correlation Dimenslon and Ite Relation to KNN
Estimation of Probebility Density.

Procqccia showed. that there exiéts sn infinite set of dif-

ferent dimensions charscterizing sn attractor:

Mg}
i .
4= g pm 2 Re/o ™
E L= ‘

the d-dimensional initial gpace where &an attractor arises is

livided into M(E) cubes (voxes, cells, bins....), and in each
1f them s probebilistic measure p, is determined. A cube vo-
lume is Ed 5 % is an arbitrary real nqmber. One can readily
show that at %—*-0 the generalized dimension coincides with

gelf similarity dimension:

B ( Mxst/Mk)
_ M 28 (2
Do = Tallrnr/lx)

where AMg is e number of self-similer objects oecurring at
fregmentation of scale at a K -th step, self similerity di-
mension in turn is tightly connected with the Hausdorf dimen-
1ion:

a@qv...o =D, = -BE?‘ETmEnM(E)/BnE , (3)

E



where N is number of points on the attractor.

Practically, dimension is determined as a slope of the
gtraight line that connects M(E) end P in double-logarith~
mic scale, To Qo so, one, of course, should be given by a
series {ei},l=1,u'K, K>3 and calculate the relevant
series of values of {N1(h}} ~ number of cells of the size

i  wherein the points of the studied set hag fallen, At

q-hl the generalized dimension reduces to the information
one;
m(e)
= = e' E -Eﬂ. H E
Dgows = 6 = fims lim 2_Pilnpi/tnt @)

i=1

Most important for the applied cases is a correletion dimen-

sion &£ corresponding to the cage:

M)
oﬁar:a =9 =2EB" :f,":o €n _Zf pf/EnE_ ' - (5}

The correlation dimension ia significant, firstly, because it
characterizes local structure.of the attractor, and secondly,
because, =3 will be seen further, it can readily be calculatéa
for dimensions of the initisl space O »2 , The algoritmm
of direct counting‘of cells is rather tedious and isg applicable
only for the cage ¢ g2 .'Clearly, at d=10 and fragmentation
of_each axis by 10, already at the first step the number of
cells amounts to 1010, and certainly, it is impossible to
create an adequate numerical method operating with such great

arrays.

One can see from (5) that the correlation dimension is de-

termined from the [ dependence of the number of the sget
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points being within distance § . One should be given by the
values of {Ei} snd estimate ﬁor each of them so-called corre-
letion integral (rumerator of formuis (5}). In Refs. [16,17)
further simplifications of formula (%) are suggested. Using

ergodic theorem one can meke s replacement:
M{e)

N
2 1 ~ . :
;PL"'}T;PE , e
where ?& is the probability to f£ind the point of the studied
set not simply on the sttractor but inside the hyperball of
radius £ , with & centre af some other point of the studied
set. - .

Further, analyzing formulae (1), (8}, (6), we can show that
the correlation integrel C(E) is simply equael to everage
number of pointg inside ayperballs of radius £ with centres
at the pdints of the set. And for aumerical celculation of the

correlation dimension the following relation is used:
L2
c(e)y~ 2. - AT

Calculating the veiues of the corfelation integral for several
{ >3 ) values of P, we cen estimete & =as a slope of the
streight line connecting C(8) and P in double-logerithmic
sqale. Numericsl calculations are carried out for a fixed
geries {Ej} and sgme finite N . However there are no
instructions regarding the choice of these parameiers.

We'll try to overcome this drawback and, by introducing

some natural scele, to remove uncertainty in the cholce of

_{*?i }



Let us replece in formula (7) f by Rgk , where ﬁu is
the set-aversged distance to the K -th nearest neighbour

(KNN}; so we obtain
= = 0 (8)
C(RK)N'(RK).
Notice that the left-hand side ia equivalent to the average
number of the set points being inside the hyperball with =

radius equal $to the average distance to the K -th neighbour,

l.e. equal to the number

K~ (R)2. (9)

Hence, the modified algorithm determines & as 2 slope of

K dependence of ?ix in double-logarithmic scale over geveral
values of {KJ} {we usually take Kj= 34, ... X . X =N 3
the gtudy of ¥ dependencerof K in nonparsmetric estimation of
probability density is presented in Refs.[18,19]).

Thus, we introduced & natursl scale - average distance to
the nearest neighbour - and cobtained g relation between the
values of N and K parameters. As will be seen below from the
results of simulations, the choice of { Kj} valueg conirary
to {Ej} ig not too critical relative to the shift and

spread of obtained values.

2. KNN Estimation of Probabili%y Density. Local and Global

Egtimations of Dimension.

Congider nonparametric KNN estimation of probability density

which is a development of simple histogram methods [20,21] H



N . S
PK,N (X;_) = N - VK,N (x.‘) J . {10)

whexre vK,N(Ki) ig 2 volume of & -dimensional hypersphere
containing the nearest to X; representatives of the studied
set:
e
D Jq
vK.,N(xl)— veﬁ RK|H ) VJJ: r($/8+1) , - (11)

From (10) and (11) we can readily obtain (see [22] ): -

‘ ) e
B Ry (%) =3 2rK + Br [N-Vip P (%0)] (12)

Eq.(12) cennot be solved relative to & , since P(xi) de-
pend on K . Therefore, we perform averaging of R&H over
the whole set according to the distribution function:

{ (cRD!

fox (R) = cOR™ —— o exp (cR?), )

where C=NP(x)Vp _
Replacing the mathematical expectation velue by sampiing
average (or medien) wg'll obtain in the approximation of small

R and large N the following equatiom:

1
ERGK'g)'f' EHRK|N EEEHK*’C;

GK,% = Kf/ﬂr(K)/r(K-f-f/o@) . (14)



0

The difference of (14) from (7) and (9) consists in the so-
called iterative addition, Gx,d , which is close to zero
for all K and & . Therefore we solve Eq.(14) iteratively,
first sssuming Gy g =0 , and then, having obtained ég ,
we calculate Gy, and éetermine a new value of 15i+1 .
We'll gtop the iterative process, when change praoticaily no
longer takes place, Such verification of ‘é estimates is
connected with everaging of the correlation integral.

The correlation inpegral equivalent to the number of the
zet points inside the hypersphere of radius RKﬁ; is a random
quantity having binomisl distribution with paremeter P(Xi)

~ the probability for the point to fall into this hyperball.
In the approximation of smell R  and large N this diastribu-
tion is well-approximated by the Poisgon distribution (13).

Thus, we obtained the method of estimation of dimension for
the finite set of experimental efents, and we'll apply it to
the analysis of multiple reactlions. Notice that we obtained a
global estimate, l.e. the whole set is charmcterized by a
unigue numbér, although local differences are possible in it.
From this point of view, local estimation of dimension is much
more interesting to us, since in this way we'll be able to
extract local inhomogeneities correspondinglto varicus dyna=-
mical mechanisms and, péssibly, to isolateliesonance production
on the background of invariant phase volume.

Consider Eq.(12) again., Apart from the set averaging, there
is also another posaibility to get linear equation for the de-

termination of dimension. To do so, we should choose {K]}

such thaet the density estimates would be very close, and hence
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the“dependen:e of ﬁxﬁ‘(xa) on K could be ignored. Follow-
ing these chosen valueg of {Ki} and corresponding {ij(xﬂ}‘
ve'll determine estimates of local dimension at s point Xi -
Such estimateslof denaity depend on dimension; it is necessary
to organize the iterative procedure, i.e. for the current esti-
mates of dimenéion we'll choose again the series { Ki} cor—
responding to close values of densities and so on. We'll inter~
rupt tﬁe iterative process when the value of dimension will
practically no longer chenge. Usually 2-3 iteratioms turn out
enough to setisfy the condition |®Dis¢ -Di}s 0,01

3. Results of Monte~Cerlo Simulations. N

We applied our technigue to many gimple exampies'(CQGh
curve, Serpinsky cerpet, Cantor set, etc.) and obtained esti-
mates being in good agreement (with account of limitedness of
gamples and geﬁerations) with theoretical velues.

) The gtudies witﬂ Monte-Carlo simulations of multiple produc-
tion eventa were aimed at = comparison of "pure statea™ - the
regonance production evenis and the events when interactions
between secondsry particles are absent (I and II of Pig.1).
Apert from that, the possibility of extrection of the resonance
production events on the kinematic background was studied.

We genersted semples according to schemes 1 and 2 with res-
pect to resonant width and arbitrary momentum resolution,
Further, by formula (14): we determined dimension of the set
5f points for various values of pargmeters K and N. Averag—
ing was performed over 0 independent semples, As 18 seen from

Figg. 2.and 3, the dimension criterion allows to dimtinguish
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with high precision various dynamical mechanisms of final
state production. The values of estimateg are stable with res-
pect to the choice of the method pafameters and the sampling
volume of the order of 200 is sufficient for reliable recogni-
fion. The errors of estimates increase with the growth of di-
mension, which agrees perfectly with the Practice of multi-
dimensional statistics [23] . The errors decreage with growing
N and X, and this testifies to the method validity and to de-~
creaéed influence of fluctuations with growing sample size,
Possible ways of the method utilizetion will be discussed
in the Conclusion, while here we'll mention a relation of ob-
tained characteristics to the number of degrees of freedom in
the final state. By the known formula [24] N = 3M-4, M is
. the number of particles in final state. For the resonance pro-
duction (11) N = 4, non-resonance (1) N = 8. 0of course,
the possibility to recognize "pure states” is of interest, but
actually et large multiplicities the final state i a mixture
of various modes, and it is juét necessary to extract from the
background the events corregponding to nontriviel dynsmical
mechanisma._We may assume that in such a mixture loeal inhomo-
geneities and cliusters can be observed,”which have different
dimension refleecting the prgduction mechaniéh. Therefore, the
next step in our study was determination of local dimension in
a mixture of two T"pure states" I and I1, Fig.4 shows that the
bresence of regonance whose fraction decreased down to 20%
clearly ig an excess over background corresponﬁing to non-
resonant production according to invariant phase volume.

The iterative procedure began with the value H =25, then
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we chose 5 medien velues of density (ordered statistics from
10 to 14), dimension was determined by the relevant velues of
{ Kj} and {RKj(Xi)}} then, with the new value of dimension

we again determined denmsities, and so on, until the change in
dimension was less than 0.01.

In this way we determined dimensicn for each event of the
samplg.

Thé prograﬁ uses fast~sorting algorithms [25] , therefore,

time spent for obtaining dimension distribution is not much.

Conclugion,

We demonstrated that the proposed method of snalysis of
kinematic inforﬁation of multiple production allows to recog-
nize "pure" states - samples conasilsting of entir ly background
process eand resonance production. Besides, the locsl dimension
distrivutions allpw to extract the resonance productibn evenys.
Thus wé can judge slso on & frection of corresponding channels

of remction. The method may be recommended for preliminary
gnalysis of kinematic informetion. Further, combining it with
the cluster anelysis [26,27] and effective mass analysis one
cen determine besides the fact of existence of resonances
themgselves glso their widths and masses. Algqrithms of dimen-

sion analysis are rather simple and fast and offer asn opportu-

’nity to visualize miltidimensional information.

In conclusion the suthors would like to express their ain-
cere gfntitude to H.R.Gulkanyan, S.G.Matinyan and G.K.Sevvidy

for the u--fu1_discunaions; to Ts.A.Amatuni and G.Ranshall for
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pregsenting programs, One of the authors (A.A.C.) is thankful -

1o I.Dremin and I.Sokolov for the valuable remarks.
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Fig.1.

Pig.2.

Pig.3.

Fig.4.

Figure Captions

Comparison of global estimates of correlation
dimension for two versions of obtaining & given
final staté. Dimension of initial space is 16.

The number of degrees of freedom of version I is 8,

of versgion II is 4,

Dependence of average distance to the K -th
neighbour on K, by which the correlation dimension

is determined,

-

Determination of correlation dimension by different

muber of events of multiple production (version I1).

Liocal dimensions distribution for éifferent

proportions of the mixture of events of I and TI type.
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