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. С.Х.АРЛЮНЯН,А.А.ЧИЖНГАРЯН

О ВОЗМОЖНОСТИ АНАЛИЗА МНОГОМЕРНОЙ КИНЕМАТИЧЕСКОЙ

' ИНФОРМАЦИИ С ПОМОЩЬЮ КБС ОЦЕНОК РАЗМЕРНОСТИ

В работе описывается новый метод анализа множественных к о -

нечных состояний в физике высоких энергий. Метод не претендует

на полное выявление динамики реакции и определение масс и ширин

резонансов. Он может быть рекомендован для предварительного

анализа событий с большой множественностью и способен дать

указание на существование различных связанных состояний. Метод

позволяет производить двухмерное отображение многомерных дан-

ных, что особенно важно при диалоговом режиме обработки данных.

В работе использованы новые алгоритмы определения корреляцион-

ной размерности, на основе КБС оценок многомерной плотности

вероятности. Эти алгоритмы более удобны и точны в сравнении с

ранее предложенными, и з - з а введения естественного масштаба и

учета функции распределения корреляционного интеграла . Р а б о т о -

способность алгоритмов проверена в серии вычислительных э к с п е -

риментов с монте-карло реализациями процесса адронорождения.

Ереванский физический институт

Ереван 1988
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A new method of analysis of multiple final states in high

energy physics is described. It can be recommended for preli-

minary analysis of events with high multiplicity and is able

to make indication at the existence of various bound states.

The method allows to perform two-dimensional mapping of multi-

dimensional data, this being particularly important in the

dialog mode of data handling. New algorithms are used for the

determination of correlation, dimensionality, based on KNN es-

timation of probability density. These algorithms are more

suitable and precise as compared to earlier suggested ones,

due to the introduced natural scale and the account of the

distribution function of the correlation integral. The algo-

rithms correctness is checked in a series of the Monte-Carlo

hadroproduction simulations.
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Introduction.

Recently, a great success in the description of complex

systems behaviour was achieved by using geometrical represen-

tations. The generalized dimensionality originally introduced

by Reni [1] and applied by Grassberger and Procaccia for the

analysis of chaotic behaviour [2] proved to be highly fruitful

in various applications, beginning from the description of

crystal growth [3] and up to the analysis of star cluster [43

and quark-gluon plasma [5] •

On the other hand, the development of Mandelbrot's ideas '

about the fractal character of the Nature [6] also gave rise

to a new understanding of complexity in the physical experi-

ment.

The kinematic information about high-multiplicity reactions

sharply increases and simultaneously there enhance difficultieb

as to detect so far unknown mechanisms of production of a

given final atate [7] . Effective mass distributions do not



allow to make any definite conclusion.

All available information on the reaction is-embedded in

the values of all possible random quantities induced by this

reaction and measured in experiment. Events are concentrated

in relatively small regions of phase space.

Essential inhomogeneity and complexity of the events pat-

terns in phase space just brought us to the idea to use a

fractal approach for the analysis of multiple production.

Fractal set in a wide sense is a set whose structure is re-

lated to dimensionality [8] . Fractal analysis proves to be

useful every time when the systems behaviour is characterized

by attractivity. That is, final states are grouped in some

subspace called attractor, whose dimension is less than that

of the initial phase space [9] .

It should be mentioned that there ex̂ .st many different de-

finitions of dimensionality and specific schemes to calculate

them for finite sets [10] , most of which go back to the first

generalization of the dimensionality notion by Hausdorf [11] .

However for cases important to physical experiments, most of

these definitions are equivalent; therefore we'll prefer the

methods allowing to obtain adequate estimates for large dimen-

sions of initial space.

Strict mathematical definitions of dimensions as well as

references to the appropriate references can be found in [12].

Highly useful proved to be the approach worked out by Pro-

oaccia et al. and L.Young [13,14] in the recent years, which

allowed to generalize some most popular definitions of dimen-

sionality and create a numerioal method of calculation. Note

4..



that the aim of the fractal approach is not to equip us with

a ready theory but to formulate empirical facts on a geomet-

rical language [15] for a subsequent comprehensive analysis.

1. Correlation Dimension and Its Relation to КГОГ

Estimation of Probability Density.

Frocaccia showed that there exists an infinite set of dif

ferent dimensions characterizing en attractor:

Mie>

Phe d-dimensional initial space where an attractor arises is

livided into M(£J cubes (boxes, cells, bins..*.), and in each

jf them a probabilistic measure pt is determined. A cube vo-

lurae is t , 0 is an arbitrary real number. One can readily

show that at Q-^0 the generalized dimension coincides with

self similarity dimension:

where ДМк is a number of self-similar objects occurring at

fragmentation of scale at а К -th step, self similarity di-

mension in turn is tightly connected with the Hausdorf dimen-

sion:

(3)



where N is number of points on the attractor.

Practically, dimension ia determined as a slope of the

straight line that connects M(i) and £ in double-logarith-

mic scale. To do so, one, of course, should be given by a

series {^t},i=l,-K, K > 3 and calculate the relevant

series of values of f M(Cj)J - number of cells of the size

Ei wherein the points of the studied set had fallen. At

0 -•> f the generalized dimension reduces to the information

one:

£ P̂ ft/*1* (4)

Most important for the applied cases is a correlation dimen-

sion ой corresponding to the case:

MtC).

T PfA8 (5)

The correlation dimension is significant, firstly, because it

characterizes local structure.of the attractor, and secondly,

because, as will be seen further, it can readily be calculated

for dimensions of the initial space d 5>2 . The algorithm

of direct counting of cells is rather tedious and is applicable

only for the case d < 2 . Clearly, at d=10 and fragmentation

of each axis by 10, already at the first step the number of

cells amounts to 10 , and certainly, it is impossible to

create an adequate numerical method operating with such great

arrays.

one can see from (5) that the correction dimension is de-

termined from the £ dependence of the numbe-r of the set

б



points being within- distance I . One should be given by the

values of {t\,\ and estimate for each of them so-called corre-

lation integral (numerator of formula (5)). In Refs. [16,17]

further simplifications of formula (5) are suggested. Using

ergodic theorem one can make a replacement:

(6)У P e — > P.

where p? is the probability to find the point of the studied

set not simply on the attractor but inside the hyperball of

radius t , with a centre at some other point of the studied

set.

Further, analyzing formulae (1), (5), (6), we can show that

the correlation integral C(E) is simply equal to average

number of points inside iiyperballs of radius В with centres

at the points of the set. And for numerical calculation of the

correlation dimension the following relation is used:

Calculating the values of the correlation integral for several

( > 3 ) values of £ , we can estimate «0 as a slope of the

straight line connecting С(8) and 6 in double-logarithmic

scale. Numerical calculations are carried out for a fixed

series { Ej } and some finite N . However there are no

instructions regarding the choice of these parameters.

We'll try to overcome this drawback and, by introducing

some natural scale, to remove uncertainty in the choice of



Let us replace in formula (7) I by R K » where R* is

the set-averaged distance to the К -th nearest neighbour

( Ш ) ; so we obtain

Notice that the left-hand side is equivalent to the average

number of the set points being inside the hyperball with a

radius equal to the average distance to the К -th neighbour,

i.e. equal to the number

Hence, the modified algorithm determines 3b as a slope of

К dependence of R
K
 in double-logarithmic scale over several

values of { Кj J (we usually take Kj
 s
 5,4, ... ЭС

 f
 A — AW •

the study of N dependence of К in nonparametric estimation of

probability density is presented in Refs.[18,19]).

Thus, we introduced a natural scale - average distance to

the nearest neighbour - and obtained a relation between the

values of N and К parameters. As will be seen below from the

results of simulations, the choice of ( K J J values contrary

to { Bj j is not too critical relative to the shift and

spread of obtained values.

2. KNN Estimation of Probability Density. Local and Global

Estimations of Dimension.

Consider nonparametric Ю Ш estimation of probability density

which is a development of simple histogram methods [20,2iJ »
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к

where ^
i N
(Xi) is a volume of ой -dimensional hyperspher»

containing the nearest to X; representatives of the studied

set:

*

From (10) and (11) we can readily obtain (see [22] ):

Eq.(12) cannot be solved relative to Si , since P(*i) de-

pend on К . Therefore, we perform averaging of RK,M over

the whole set according to the distribution function:

(13)

where C»NP(X)Vfc

Replacing the mathematical expectation value by sampling

average (or median) we/11 obtain in the approximation of smal3

R and large N the following equation:

in 6
К | Я
 + In R

K
,N

 a
 T"

I



The difference of (14) from (7) and (9) consists in the so-

called iterative addition, G
K
,d » which is close to zero

for all К and eD . Therefore we solve Eq.(14) iteratively,
л

first assuming G
K/
a
 s
 0 , and then, having obtained 8>\ ,

л
we calculate (rK£L and determine a new value of <#;-ц .

We'll stop the iterative process, when change practically no
л

longer takes place. Such verification of Si estimates is

connected with averaging of the correlation integral.

The correlation integral equivalent to the number of the

set points inside the hypersphere of radius RK,N is a random

quantity having binomial distribution with parameter P(*0

- the probability for the point to fall into this hyperball.

In the approximation of small R and large N this distribu-

tion is well-approximated by the Foisson distribution (13).

Thus, we obtained the method of estimation of dimension for

the finite set of experimental events, and we'll apply it to

the analysis of multiple reactions. Notice that we obtained a

global'estimate, i.e. the whole set is characterized by a

unique number, although local differences are possible in it.

From this point of view, local estimation of dimension is much

more interesting to us, since in this way we'll be able-to

extract local inhomogeneities corresponding to various dyna-

mical mechanisms and, possibly, to isolate resonance production

on the background of invariant phase volume.

Consider Eq.(12) again. Apart from the set averaging, there

is also another possibility to get linear equation for the de-

termination of dimension. To do so, we should choose {Kj \

such that the density estimates would be very close, and h«nc«

10



л

the dependenae of P K N ( * O
 o n

 К could be ignored. Follow-

ing these chosen values of { Kj J and corresponding {R
K
j (x

t
)J

ve»ll determine estimates of local dimension at a point Xi .

Such estimates of density depend on dimension; it is necessary

to organize the iterative procedure, i.e. for the current esti-

mates of dimension we'll choose again the series {
 K
i} cor-

responding to close values of densities and so on. We'll inter-

rupt the iterative process when the value of dimension will

practically no longer change. Usually 2-3 iterations turn out

enough to satisfy the condition j«2>t+( -«Dij^OiOf

3. Results of Monte-Carlo Simulations.

We applied our technique to many simple examples (Coch

curve, Serpinsky carpet, Cantor set, etc.) and obtained esti-

mates being in good agreement (with account of limitedness of

samples and generations) with theoretical values.

The s'tudies with Monte-Carlo simulations of multiple produc-

tion events were aimed at a comparison of "pure states" - the

resonance production events and the events when interactions

between secondary particles are absent (I and II of Pig.1).

Apart from that, the possibility of extraction of the resonance

production events on the kinematic background was studied.

We generated samples according to schemes 1 and 2 with res-

pect to resonant width and arbitrary momentum resolution.

Further, by formula (14), we determined dimension of the set

of points for various values of parameters К and N. Average

ing was performed over 10 independent samples. As is saen from

Figs. 2 and 3, the dimension, criterion allows to distinguish

11



with high precision various dynamical mechanisms of final

state production. The values of estimates are stable with res-

pect to the choice of the method parameters and the sampling

volume of the order of 200 is sufficient for reliable recogni-

tion. The errors of estimates increase with the growth of di-

mension, which agrees perfectly with the practice of multi-

dimensional statistics I23] * The errors decrease with growing

N and K, and this testifies to the method validity and to de-

creased influence of fluctuations with growing sample size.

Possible ways of the method utilization will be discussed

in the conclusion, while here we'll mention a relation of ob-

tained characteristics to the number of degrees of freedom in

the final state. By the known formula [24J N • 3M-4, M is

the number of particles in final state. For the resonance pro-

duction (11) N = 4, non-resonance (1) N « 8. Of course,

the possibility to recognize "pure states'* is of interest, but

actually at large multiplicities the final state is a mixture

of various modes, and it is just necessary to extract from the

background the events corresponding to nontrivial dynamical

mechanisms. We may assume that in such a mixture local inhomo-

geneities and clusters can be observed, which have different

dimension reflecting the production mechanism. Therefore, the

next step in our study was determination ot local dimension in

a mixture of two "pure states" 1 and 11. Fig.4 shows that the

presence of resonance whose fraction decreased down to 20%

clearly is an excess over background corresponding to non-

resonant production according to invariant phase volume.

The iterative procedure began with the value 3(>25V then

12



we chose 5 median values of density (ordered statistics from

10 to 14), dimension was determined by the relevant values of

{ К j J and { R K J O 4 ) J » then, with the new value of dimension

we again determined densities, and so on, until the change in

dimension was less than 0.Q1.

In this way we determined dimension for each event of the

sample.

The program uses fast-sorting algorithms [25] , therefore,

time spent for obtaining dimension distribution is not much.

Conclusion.

We demonstrated that the proposed method of analysis of

kinematic information of multiple production allowj to recog-

nize "pure" states - samples consisting of entir ly background

process and resonance production. Besides, the local dimension

distributions allow to extract the resonance production events.

Thus we can judge also on a fraction of corresponding channels

of reaction. The method may be recommended for preliminary

analysis of kinematic information. Further, combining it with

the cluster analysis [26,27] and effective mass analysis one

can determine besides the fact of existence of resonances

themselves also their widths and masses. Algorithms of dimen-

sion analysis are rather simple and fast and offer an opportu-

nity to visualize multidimensional information.

In conclusion the authors would like to express their sin-

О Ю * (XWtltud* to H.R.Gulkanyan, S.G.Matinyan and G.K.Sawidy

for *bs useful discussions; to Ta.A.Amatuni and G.Ranshall for
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presenting programs. One of the authors (A.A.C.) i s thankful

to I.Dremin and I.Sokolov for the valuable remarks.

7.1

7

4.5

16ДО Ш*

*66tV Я*
(I)

s

15 го 25

Fig.1

14

N ' . .



Ш U* МО IM Ml

Pig. 2

15



Mt U U» If

Pig.3

16



\

17



Figure Captions

Fig.1. Comparison of global estimates of correlation

dimension for two versions of obtaining a given

final state. Dimension of initial space is 16.

The number of degrees of freedom of version I is 8,

of version II is 4.

Fig.2. Dependence of average distance to the К -th

neighbour on K, by which the correlation dimension

is determined.

Fig.3. Determination of correlation dimension by different

number of events of multiple production (version II).

Fig.4. Local dimensions distribution for different

proportions of the mixture of events of I and II type,

18
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