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.C.X.APYTKHAH,A. A UMLIUHTAPHH

O BOSMOXHCCTM AHAJM3A MHOI'OMEPHOR KWHEMATWYECK O
'MHQOPMAUMM C TOMOWBK KBC OUEHOK PA3MEPHOCTU

B padoTre OmUCHBAETCA HOBHI METOJ aHanM3a MHOKECTBEHHLX KO-
HEYHEX COCTOAHMEA B (U3MKE BHCOKMX 3Hepruil. MeTos He MpeTeHAYET
Ha NOJIHOE BHABIEHME ZMHAMMKN peakuuy W olpeZesieHNe Macc W WUPHUH
pe3oHaHcoB., OH MOXeT OLTH PEKOMEGHZOBAH AJIA NpejBapUTENBLHOI'0
aHaly3a COGHTUA C 6OJbWOA MHOXECTBEHHOCTBI M CIOCOGEH JaTh
yKasaHue Ha CylleCTBOBaHUE pA3MYHHX CBA3AHHBX COCTOfAHM. MeTOA
[103B04f€T NMPOU3BOANTD ZABYXMEPDHOE OTOOpAKEHME MHOTOMEpPHHX AaH-
HLX, 4YTO OCOGEHHO BAXHO NMpPU ANAJOT'OBOM peXuUMe OOCpaCOTKU ASHHHX.
B pa0oTe MCHOAL30BaHH HOBLE aNTOPUTMLI ONpPelelieHMA KOppenaduuoH-
HOf pasamepHocTH, Ha 0cHOB& KBC 0ileHOX MHOT'OMEpPHOji NJIOTHOCTH
BEPOATHOCTH., 3TH aﬁropuTmu 0oJiee YZAOOHH ¥ TOYHH B CpPaBHEHUM C
paHee HpBﬂﬁOHeHHHMM, 13-3a BBEeJEHUA €CTEeCTBEHHOIr'0 macuTada M
yuyeTa QYHKUMM pacnpezielieHUs KOPPENALMOHHOrO uHTErpana. Pacoro-
CIOCOCHOCTH &JIIOPUTMOB JIPOBEPEHA B CEPUM BHUNCHNUTEJIBHHX 2KCIE—

PUMEHTOB C MOHTE-KaplOo peanusannami Ilpouecca aipOHOPOKUAEHUA.

EpeBaHCKMii qM3NYeCKUA UHCTHTYT

Epesax 1988
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KINEMATIC INPORMATION ANALYSIS BY MEANS
OF NEAREST NEIGHBOUR DIMENSIONALITY ESTIMATION

A new method of analysis of multiple finql states in high
energy physics is described., It can be recommended for preli-
minary analysis of events with high multiplicity and is able
to make indication at the existence of various bound states.
The method allows to perform two-dimensional mapping of multi-
dimensionel date, this being particularly important in tﬁe
dialog mode of data hendling. New algorithms are used for the
determination of correlation dimensionelity, based on KNN es-
timation of probability density. These algorithms are more
suitable and precise as compared to earlier éuggested ones,
due to the introduced natural scale and the account of the
distribution function of the correlation integral. The algo-
rithms correctness is checked in a series of the Monte~Carlo

haedroproduction simulations.
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Introduction.

Recently, a great sucéeas in the description of complex
systems behaviour was achieved by using geometrical represen-
tations. The generalized dimensioﬁality originally introduced
by Reni [1] and applied by Grassberger and Procaccia for the
‘analysis of chactic behavicur [2] proved to be highly fruitful
in various applic;tions, beginning from the description of
crystal growth {3] and up to the analysis of star cluster {4}
end quark-gluon plasma {5] .

On the other hand, the development of Mandelbrot's ideas
about the fractel character of the Nature [6] also gave rise
to a new undefstanding of complexity in the physical experi-
ment.

The kinematic informetion about high-multiplicity reactions
gharply increases and simnltaneously there enhance difficulties
’aa to detect so far unknown mechanjisms of production of a‘

given final atate [7] + BEffective mass distributions do not
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allow to make any definite conclusion.

All avaiiable information on the reaction is.embedded in
the values of all posaible random quantities induced by this
reaction“and measured in eiperiment. Events are concentrated
in relatively small regions of phase space.

Essential inhomogeneity and complexity of the evgnts pat-
tens in phase space just brought us to the idea to use a
fractal epproach for the analysis of multiple production,
Practal set in a wide sense is a set whose structure is re-
lated to dimensionality [8] . Practal analysis proves to be
useful every time when the systems behaviour is characterized
by attractivity. That is, final states are grouped in some
subspace called attractor, whose dimension is less than that
of the initiel phese space [9] .

‘It should be mentioned that there exist many different de-
finitions of dimensionality and specific schemesvto calculate
then for finite sets [10] , most of which go back to the first
generalization of the dimensionality notion by Hausdorf [11] .
However for cases important to physical experiments, most of
these definitions are equivalent; therefore we'll prefer the.
methods allowing to obtain adequate estimates for large dimen-
sions of initiel space.

Strict mathematicel definitions of dimensions as well as
references to the appropriate references can be found in [12].

Highly useful proved to be the approach worked out by Pro-
caccia et al. and L.Young [13,14] in the recent years, which
allowed to generalize gome most popular definitions of dimen-
sionality and create a numerical method of calculation. Note
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that the aim of the fractal approach is not to equip us with
a fea.dy theory but to formulate empirical facts on a geomet-

rical language [15] for a subsequent comprehensive analysis.

1. Correlation Dimension and Its Relation to KNN
Estimetion of Probability Density.

Procaccia showed that there exists an infinite set of dif-

ferent dimensions characterizing an attractor:

: M(e)
Dq = T— i 2"-2.: P g fene, )

the d-dimensional initial space where an attractor arises is
livided into M(€) cubes (boxes, cells, bins....), and in each
>f them e probabilistic measure P; is determined. A cube vo-

d
lume is @ ’ Cl, is an arbitrary real number. One can readily

show that at ?—»0 the generalized dimenéion coincides with
gelf similarity dimension:

Bn (ixe1/ M) (2)
en (Exe1/Bk)

De =
where AM¢ is a number of self-similar objects occurring at
fragmentation of scele at a K -th step, self similarity di-
mension in turn ia tightly connected with the Hausdorf dimen-

+ion:

D =P, = - Etm Bim EnM(E)/tne (3)

¢t~ N-»co
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where N is number of points on the attractor.

Practically, dimension is determined as a slope of the
gtraight line that connects M(E) end £ in double-logarith-
mic scale, To do so, one, of course, should be given by a
series {ei},i.'-'i,---l(, K>3 and calculate the relevant
series of velues of {M(C;)} - number of cells of the gize

fi wherein the points of the studied set had fellen. At

q-*f the generalized dimension reduces to the information
one:
M(E)
=& = lim Cim en Ene
zq/*" f+0 N-»oo LZ:T P Pl'/ (4)

Most importent for the applied cases is a correlation dimen-

gsion & corresponding to the case:
M(L)

001=2 =D =0im tim n > p; /ene . (5)

f-+0 N-»>oo i=1

The correlation dimension is significant, firstly, because it
characterizes local structure.of the attractor, and secondly,
because, as will be seen further, it can readily be calculated
for dimensions of the initial space d »2 . The algorithm
of direct counting of cells is rather tedious and is applicable
only for the case d €2 . Clearly, at d=10 and fragmentation
of~each axis by 10, already at the first step the number of

cells emounts to 101°

, and certainly, it is impossible to
crente an adequate numerical method operating with such great
arrays.

une can see from (5) that the correl=tion dimension is de-

termined from the { dependence of the number of the set
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points being within distance £ . One should be given by the
values of {Ci} end estimate for each of them so-called corre-
lation integral (numerator of formula (5)). In Refs. [16,17]
further simplifications of formula (5) are suggested. Using

ergodic theorem one can make a replacement:

m{e) 0 ; N
= — P. (6)
2P 2

where P; is the probability to find the point of the studied
set not simply on the attractor but inside the hyperball of
radius € y with a centre at some other point of the studied
get, .

Further, analyzing formulee (1), (5), (6), we can show that
the correlation integral C{€) is simply equal to average
number of points inside nyperballs of radius e hith centres
at the points of the set. And for numerical calculation of the

correlation dimension the following relation is used:

D
ce)~e. . (7

Calculating the values of the corielation integral fcr several
(>3 ) values of £ , we can estimate & as a slope of the
straight line connecting C(8) and € in double-logarithmic
sqale. Numerical calculations are carried out for a fixed
series {Bj} end some finite N . However there are no
instructions regerding the choice of these parameters.

We'll try to overcome this drawback and, by introducing

some netural gcele, o remove uncertaiznty in the choice of

{Ej} .



Let us replace in formula (7) £ by Rk » Where R is
the set-averaged distance to the K ~th nearest neighbouwr

(KNN); so we obtain

= = \D (8)
C(Rk) ~ (Rk)",
Notice that the left~hand side is equivalent to the a\}e.rage
number of the set points being inside the hyperball with a

radius equal to the average distance to the K -th neighbour,

i.e. equal to the number

K~ (RO | (9)

Hence, the modified algorithm determines &) a8 a slope of

K dependence of EK in double~logarithmic acale over severai
values of {Kj} (we usually take K;= 5,4, . 4 . X =N ;
the study of N dependence of K in nonparametric estimation of
probability density is presented in Refs.[18,19]).

Thus, we introduced a natural scale - average distance to
the nearest neighbour - and obtained a relation between the
values of N and K parameters. As will be seen below from the
. results of sihulations, the choice of {Kj} values contrary
) to {€;} 1s not too critical relative to the shift and

spread of obtained values.

2. KNN Estimation of Probabili%y Density. Local and Global

Estimations of Dimension,

Consider nonparametric KNN estimation of probability density
which is a development of simple-histogram methods [20,21] )
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oo R

K
Fen (%) = N em vy - (0)

where Vi y(Xi) is a volume of & -dimensional hypersphere
containing the nearest to X; representatives of the studied

set:

5 Dfe

2
VK'N(Xt) = VQ RK|N i VQ = m , (11)

From (10) and (11) we can readily obtain (see [22] ):

' A -2 _
En Ry (Xi) =;,{-enx + Bn [ N*Vip P (X1)] (12)

A
Eq.(12) cannot be solved relative to & , since P (Xi) de-
pend on K . Therefore, we perform averaging of RK,N over

the whole set according to the distribution function:

(CR‘O)“'
fix (R) = cOR™ =) “———exp (R C(13)

where C = NP(X)Vas

Replacing the mathematical expectation value by sampling
average (or median) wg'll obtein in the approximation of small
R and large N the following equation: "

‘ 1
fnGK'n * ERRNN = B-CNK*C,

GK'Q = K'/aF(K)/r(K*i/-Q) , ’ (14)



The difference of (14) from (7) and (9) consista in the so-
called iterative eddition, Gx,4 , which is close to zero
for all K and & . Therefore we solve Eq.(14) iteratively,
first essuming Ggg =0 , end then, having obtained 51 ,
we calculate Gg3, and determine & new value of éﬁ,, .
We'il stop the iterative process, when change pfgctically no
longer tekes place. Such verification of 43 egtimates ias
connected with everaging of the correlation integral.

The correlation in?egral equivalent to the number of the
set points inside the hypersphere of radius Rkn 1is a random
quantity having binomial distribution with paremeter P (Xi)

- the probability for the point to fall into this hyperball.
In the approximation of small R and large N this distribu-
tion is well-approximated by the Poisson distribution (13).

Thus, we obtained the method of estimation of dimension for
the finite set of experimental events, and we'll apply it to
the analysis of multiple reactions. Notice that we obtained a
global’ estimate, i.e. the whole set is characterized by a
unique number, although local differences are possible in it.
From this point of view, local estimation of dimension is much
more interest;ng to us, since in this way we'll be able.to
extract local inhomogeneities corresponding'to various dyna-
mical mechanisms and, péssibly, to isolateufesonance production
on the'background 6f invarient phase volume. |
" Consider Eq.(12) again. Apart from the set aversging, there
is also another possibility to get linear equation for the de-
termination of dimension. To do so, we should choose {K]}

such that the density estimates would be very close, and hence
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the dependence of ﬁuﬁ.(xi) on K could be ignored. Follow-
ing these chosen values of {Kg} and corresponding {R,‘j (Xt)}~
ve'll detexruine estimates of local dimension at a point X; .
Such estimates.of dengity depend on dimension; it is necessary
to orgaiiize the iterative procedure, i.e. for the current esti-
mates of dimension we'll choose sgain the series {I(j} cor-
respeading to close values of densities and so on. We'll inter-
rupt the iterative process when the value of dimension will
practically no longer change. Usually 2-3 iterations turn out
enough to satisfy the condition [®is¢ ~Di|< 0,01

3. Results of Monte~Carlo Simulations.

We applied our technique to many simple examples (Coch
curve, Serpinsky carpet, Cantor set, etc.) end obtained esti-
mates being in good agreement (with account of limitedness of
semples and generaﬁions) with theoretical values.

) The studies witﬁ Monte-Carlo simulations of multiple produc-~
tion events were aimed at a comparison of "pure states" - the
resonance production events and the events when interactions
between secondary particles are absent (I and II of Fig.1).
Apart from that, the possibility of extraction of the resonance
production events on the kinemetic background was studied,

We generated semples eccording to schemes 1 and 2 with res-
pect to resonent width and arbitrary momentuﬁ resolution. -
Further, by formula (14): we determined dimension of the set
of points for various values of paremeters K and N. Averag-

ing was performed over 10 independent samples. As is szen from

Figa. 2 and 3, the dimension criterion allows to distinguish
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with high precision various dynamical mechanisms cf final
state production. The values of eatimateg are stable with res-
pect to the choice of the method paiameters and the sampling
volume of the order of 200 is sufficient for reliable recogni-
fion. The errors of estimates increase with the growth of di-
mension, which agrees perfectly with the practice of multi-
dimensionel statistics [23] . The errors decrease with growing
N and K, and this testifies to the method validity and to de-
_creased influence of fluctuations with growing sample size.
Possible ways of the method utilization will be discussed
in the .onclusion, while here we'll mention a relation of ob-
tained characteristics to the number of degrees of freedom in
the final state. By the known formula [24] N = 3M-4, M is
the number of particles in final state. For the resonance pro-
duction (II) N = 4,‘n6n-resonance (1) N = 8. 0f course,
the possibility to recognize "pure states™ is of interesf, but
actually at large multiplicities the final state is a mixture
of various modes, and it is just necessary to extract from the
background the events corresponding to nontrivial dynamical
mechanisms. We mey assume that in such a mixture local inhomo-
geneities and clisters can be observed,'which have different
dimension reflecting the pr&duction mechanism, Therefore, the
next stép in our study was determination of locel dimension in
a.mixture of two ‘"pure states" I and II. Fig.4 shows that the
presence of resonance whose fraction decreased down to 20%
clearly is an excess over backgroun§ cprreﬁponding to non-
regonant production accbrdins to invariant'phaae volume.,

The iterative procedure began with the value J =25, then
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we chose 5 median values of density (ordered statistics from
10 to 14), dimension was determined by the relevant values of
{Kj} and {R.(j(x;)}; then, with the new value of dimension

we again determined densities, and so on, until the change in
diménsion was less than 0.01.

In this way we determined dimension for each event of the
samplg.

Thé program uses fast-sorting algorithms [25] s, therefore,
time spent for obtaining dimension distribution is not much,

Conclusion,

We demonstrated that the proposed method of analysis of
kinematic Information of multiple production allows to recog-
ﬁize "pure" states - samples consisting’or entir ly background
process and resonance production. Besides, the local dimenaion
distributions allow to extract the resonance productibn evenﬁa.
Thus w; can judge also on a fraction of corresponding channels ’
' of reaction. The method may be recommended for preliminary
analysis of kinematic informetion. Further, combin;ng it with
the ciuster analysis [26,27] and effective mess enalysis one
can determine besides the fact of existence of resonances
themselves also their widths and masses. Algorithms of dimen-
sion analysis are rather simple and'fast end offer an opportu-

'n;ty to visualize multidimensional information.

In conclusion the authors would like to express their sin-
cere gratitude to H.R.Gulkanyan, S.G.Matinyan and G.K.Savvidy
for the usefu) discussions; to Ts.A.Amatuni and G.Ranshall for
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presenting progrems. One of the authors (A.A.C.) is thankful

to I.Dremin and I.Sokolov for the valuable remarks.
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Mg.1.

Fig.2.

Fig.3.

Fig.4.

Figure Captions
Comparison of global esiimates of correlation
dimension for two versions of obtaining a given
final state, Dimension of initial space is 16.
The number of degrees of freedom of version I is 8,

of version II is 4.

Dependence of average distance to the K -th
neighbour on ¥, by which the correlation dimension

is determined.

Determiration of correlation dimensjion by different

number of events of multiple production (version II),

Local dimensions distribution for different

proportions of the mixture of events of I and II type.
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