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An attempt 1s made as to analyze the statistical methods of making deci-

sions on the high-energy particle Identification. The Bayesian approach is

shown to provide the most complete account of the primary discriminative in-

formation between the particles of various types, It does not impose rigid

requirements on the density form of the probability function and ensures the

account of the a priori Information as compared with the Neyman-Pearson

approach, the minimax technique and the heristic rules of the decision li-

mits construction In the variation region of the specially chosen parameter

The methods based on the concept of the nearest neighbourhood are shown to

be the most effective one among the local methods of the probability

function density estimation. The probability distances between the

training sample classes are suggested to make a decision on selecting the

high-energy particle detector optimal parameters. The method proposed and

the software constructed an tested on the problem of the cosmic radiation

hadron Identification by means of transition radiation detectors (the "PION"

experiment).
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В работе предпринята попытка анализа статистических ме-
тодов принятия решений о идентификации частиц высоких энергий.
Показано, что в сравнении с подходом Неймана-Пирсона, шши-шк-
онгГг методикой и эвристическими правилами построения границ ре-
шения в области изменения спепиально выбранного параметра, бай-
есовский подход обеспечивает наиболее полный учет первичной раз
личителыюй информации мезду частицами разных типов, не налага-
ет аисткпх требований на вид плотности функций правдоподобия и
обеспечивает учет априорной информации. В работе показано, что
среди локальных методов оценки плотности вероятности функции
правдоподобия наиболее эффективны методы, основанные на концеп-
ции "ближайщего соседства". Для принятия решения о выборе опти-
мальных параметров детекторов частиц высоких энергий предложено
использовать вероятностные расстояния между классами обучающей
выборки. Предлагаемые методы и созданное математическое обес-
печение проверены на задаче идентификации адронов космического
излучения с помощью детекторов переходного излучения (экспери-
мент "Ibi-.v:").
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Introduction

The spectrometric and shower Installations as well as the Cerenkov

counters are used for the high-energy particle Identification. However,

at very high energies ( > 1 TeV) It Is difficult to achieve the high accura-

cy of Identification at reasonable losses» therefore the methods based on

the registration of the transitions radiation occurring at the relative par-

ticle passage through the laminar medium have become widespread 1 .

The peculiarity of the Identification problems consists In the Impossi-

bility to confine oneself to various hypotheses realization probability pre-

dictions - the final choice of the decision on the particle type Is requir-

ed 2 . The algorithm the decision choice Is realized with 1s called a

decision rule or a classifier.

The main premise of the classification theory methods application to the

experimental Information processing problem 1s the existence of the experi-

mental Installation Imitation model and the randomness of the output vari-

able 3 . The qualitative judgement on the registered particle type 1s the

output variable In the Identification problems.



The stat ist ica l decision optimization 1s connected with the choice of

the decision rules minimizing the 'Jentif ication errors and losses due to

them.

Assume that the space of the possible states of nature (or simply states)

consists of two mutually exclusive events A and B. The event A - a particle

of type a traversed the Instal lat ion, the event В - a particle of type b.

The space of the possible stat ist ica l decisions w i l l also consist of two

elements T and T , where 7k Is the decision on that the A type event

1s realized, 8 - the В type event. The relationship between the state

and decision spaces 1s realized by means of the observations of the experi-

ment outcomes.

The Z outcomes space comprises a l l the 'possible values measured 1n the

experiment I f the A and В events art realized. The decision rule puts a de-

f i n i t e element of the decision space In correspondence with each element

of the Z set.

. / . A - 1f a definite condition holds
d ( Z ) -

4 В - 1n the opposite case

for al l the 2 £ Z

If one can enclose the set of values answering the a and b type particles

in the nonintersecting regions, then It Is possible to formulate a condition

providing the correct classification. However the situations are encountered

much more frequently when the distributions of the measured values overlap

more or less significantly, then the following event combinations are pos-

sible:

AUA , bUb, AU6, 5UA
The f i r s t two combinations corresp—wJ to the correct Identification,



the last two ones lead to the errors and losses due to them arising when

the type b Is attributed to the particle • and vice versa.

The principle impossibility as to redure simuitamoauely both the errors

to «be desired level leads to seme subjectivity t« the optimal statistical

decision selection.

According to the most wide-spread tocmaiaue of Hayman Pearson 4 , the

error of the most Important event 1s fixed at the minimum level (usually

It. SX). The rules minimizing the alternative error (the one of the second

kind) will be the optimal decision rules In this approach. Another approach

Is connected with the selection of the decision rales minimizing the largest

possible error 5 . The Neyman-rmarson approach from the very beginning

Introduces an asymmetry Into the space of the possible decisions, the mini-

max approach protects from wiy large losses, but In the meanwhile the pos-

sible compromise between tint risk and advantage Is lost.

The most general approach of the statistical decisions optimization

(the Bayesian approach) formalizes the account of all the losses expected.

The total account of all the Information available concerning the experiment,

both the one known before the experiment - the a priori Information, and

the one obtained after the experiment - the posterior Information, Is the

purpose of the optimization analysis from the Bayesian positions. The Baye-

s1an decision rules are constructed proceeding from a functional minimiza-

tion representing the losses averaged 1n all the possible event combinations.

There are no decision rules better than the Bayesian one for all the possible

events simultaneously 6

Recently, the nonparamatrical decision rules 7, 8 were suggested to

Interpret the data from the cosmic ray physics experimental installations

with the most evident advantage consisting in the total account of the dis-



crfwf «stive laforaatleo b i t w w the events of various types. The мярага-

mttrfcal decision mlts are based «n tkt probability density function local

estiMtlea, they do net use any assoajrtloa м to Its font, operate with the

prinary M I N H M M U I iNfonatio* « * (to not «Ml with the hiertttic choice

of aey pin—tar. Tkt desire to deasmtrate tkot the Bayvsian paraaetrical

procooarti art $1ap1t «ad ocoaoslcal In th* p a i f w a c a a«i provida tkt

«•at r t l i r t l t fdanttflcattoR, Is tko мерам of tko prasant a«a1y$1s.

1. Taa Bayasia» Dac1s1aa >aWs

Tho layosiM appratrii taoltos tko «etamtMtta* of tko p r U r t l H t r ani

cost •aasaras oa tha stato» tfacfsfaa шяЛ ORaartaaat oatcoM saacat» Tkont

ara several ways of caaatfectlaj sock •aasoras 9 • tko east vl4a>savea4

oao of M M C * bofaf as f o l i o » :

1) The cost «ssswro V ( A , B ) is tfttonatnoi аи tka direct prefect of tke

stato and dacisloo spaces т tke losses 1 * the cose of t k e ? dacisioii,

tt» state of nature H A . for tke Idaatiftcatlea prabiaas one «ay assam

the losses to be zero at the correct classificatlea aad Identical at any

error - the so-called staple fenctlea of losses:

V(A.A)« V

2) The aaasoro p ( A ) Is datewlnoi ea the space of tht possible states •

an a priori p i i t i l l H t y of the A tjpe ovss* reoltoottoa. 1o ear case - tke

portion of tke а фро parnclea to Ike prtaary flea eoeeered dar1a§ tke pro*

Ш Г 1 1 1 Г » «ИоОТ шЯШ Ш pFWvrf



The a priori probabilities may be considered also as the means of "weighing"

the errors.

3) The conventional measure (the likelihood function) p ( Z / A j 1s deter-

mined on the space of the experiment outcomes - the Z value observation

probability, If a 1s the type of the particle *. The peculiarly df the

procedure of the statistical decisions on Identification 1s that the con-

ventional measure Is set by moans of the Imitation experiment results. The

way of the likelihood function estimation by the classified outcome sets

(the training samples) 1s the key one in the problematthe statistical de-

cisions and will be treated 1n the next paragraph.

The Information obtained In course of the experiment is summarized In

the likelihood function, the information known before the experiment - in

the a priori density. One may accumulate all the information available (by

means of the Bayesian theorem) and Introduce the so-called posterior mea-

sure 10

P(A/2)-Cp(2/A)p(A) u.3)

The posterior density shows the probability of that the A «vent took

place» provided the value Z was observed In the experiment. The normaliz-

ing w it .»Her С Is Introduced for the posterior measure to be probabi-

listic (I.e. to have the meaning of the probability density).

Uslsg the condition **

* In the general case z. Is the vector value Z * ( 2
f
 ,2

4
,...2n.j

« * • • • • ' . . • ' • : • ' ' ' • ' • • • ' • ' • ' • ' ' •

The A and В events fera a complete system.



we obtain

i/c =p(A)p(z/A) + p(b)p(z/B) (i.s)

At the Bayesian approach the avenge losses are calculated for all the

points of the decision space. The average losses (or the risk R) of making

decisions at the points A and В have the following form:

6 )

When using the simple function of losses (1.1)

R(b)»P(A/z)
The risk to яаке a decision A according to the outcome obtained Is

tjual to the В event posterior probability. The risk to make a decision В -

to the A event posterior probability. Hence, the decision rule minimizing

the risk at all the points Z of the experiment outcome space will look

like

d
(
Z) . I «

 ( Л
В In the opposite case

The rule (1.8) Is called the rule of the posterior density maximum. In ob-

serving the Z. outcome the particle Is related to the type ensuring the

posterior density maximum at the point 2. . Making use of the ratio (1.3)

one may obtain the Bayesian decision rale of the likelihood, function maxi



I .fp(A)p(
2
/A)>P(

6)P
(z/b)

 ( 1 Л

В In the opposite case

If the a priori probabilities are equal, then

z
 A „ p(z/A)>

P
(2/6)

 (iio)

В In the opposite case

The event 1s referred to the type ensuring the likelihood function maximum

at the point Z

2. The Likelihood Density Function Local Estimations

As vie have seen, the Bayesian decision rules are based on the calculation

of the likelihood function density. Assuming the latter to be known, one may

directly make a statistical decision after calculating Its value for various

particle types and compare the obtained magnitudes.

However, as it was already mentioned, all the Information on the likeli-

hood function 1s contained 1n the training samples • the Imitation experiment

realization sets for the particles of various types.

If the likelihood function form 1s known, the experimental Information

vector dimensionality Is not large and (or) the condition of the conventional

density parametrical Independence holds:

then the maximum likelihood method m y be applied to estimate the likelihood

function unknown parameters. If the condition (2.1) does not hold, then the

computational difficulties due to the account of the correlations between

the Z vector components make the application of the maximum likelihood



method inefficient.

The most general (nonparametrical) approach not connected with any sim-

plifying assumptions and requiring only the continuity of the likelihood

function, is based on the density local estimation at the points Z of the

experiment outcomes sp?ce 11 .

The density local estimation is based on the followinq assumptions:

1. The space of the experiment outcomes may be divided into Л I regions

containing all the possible realization of the experiment.

2. The probability of hitting the region -0.1 is equal to the ratio

Kl//V »
 w n e r e

 К I Is the number of outcomes Involved In the I -th

'•egion, hi is the total number of outcomes.

3. the arbitrary distance measure may be introduced Into the outcome

space.

In case of items 1-3 being true we shall obtain the local density estima-

tion in theSii. region In the following form:

(2.2)
pi(Z/A)

N
 =

1s the SZi region volume.

In dividing the space Into rectangular cells of identical sizes (the

hystogram method with the constant spacing) the local estimation is connected

with considerable difficulties.

Indeed, let us assume the vector Z. dimensions to be equal to 5. To

ground statistically the hystogram method at least 5 values are required to

get into each cell 12 . If dividing the variation region of the ? vec-

tor each component into at least ten Intervals, then the total number of the

cells will amount t o W ^ minimal number - to

5 « 1Л
5
. i

 :

10



The statistical provision of various cells Is not Identical and the den-

sity inside the N-dimensional ejbe Uel*} n̂ y vary considerably.

Much more attractive H the •sriea tD construct the density estimations

using the N-dimensionaf hyperbai* with the centre at the point of interest.

In this case there is no need to keep in memory the "density library", eac*

time the densities will be calculated anew. The asymptotic properties of

гпе estimations are such, that one may limit himself to a much Hss number

of training sample sires than in the first case 13 . The JcL гез'-лп «.?

vary, for the density estimations at each point to De identically provided

statistically - e.g. the regions may be required to contain equally К vec-

tors fro* the training sample. The Ql region volume will thus depend o-

the space dimensions, the training sample size, the К parameter end

the location of the Z hyperball centre.

There is a large wanety of the density nonparamefical estimations, •*:*•

p r i n c i p a l ones d i f f e r : » » ? ?« t h e way of t h e t r a i n i n g sample a o p H c a t i o r '••-
*

f i r s t rale of the KNN ;£ does not make any difference between the

traininc sample classes Toe .Qi regions are constructed so as to in»t:>r

К members of the uoUed sample, the density estimation -s obtetnec •;

the following form:

* Ka/Л/а» <pi '«г.з;

is the Sti region volume

and ft £ are the total numbers of the traininQ sample alternative

classes. К a and K& зге the numbers of representatives of the A an;;

£) classes among the К nearest neighbours of the Z vector.

* KHN - к nearest neighbours.

11



The second rule KNN 14 Implies the construction of various regions

&'iA and -Scife , each Involving К members of various training sample

classes:

P
L
 (г/Б) =

ф [
А
 and ф\.ъ are the S C L A and Qi.b regions volumes.

The second rule 1s usually used In the modified variant by calculating

and then averaging the density for various К IS . The К parameter value

1s determined by the training sample sizes and the true densities. Usually

the optimal К Is equal to the square root of the training sample size:

In the computational aspect the distance ranging from the studied point

to all the training sample members 1s a process that requires the most time

expenditure In the KNN rules.

There Is no need to calculate the probability densities In the explicit

form when classifying, as In the Bayesian decision rules 1t Is enough to

know only which of the alternative classes ensures the highest density.

Substituting the density values (2.4) and (2.5) In the Bayesian decision

rules maximizing the posterior risk and the likelihood function (1.8),

(1.9), we shall obtain the KNNj and KHH
?
 decision rules*:

The relation between the KNN decision rules and the Bayesian ones 1s ana-

logous to that between the optimal estimations and the general population

parameters, therefore the KNN rules are sometimes called "empirical Bayesian

rules".

12



В In the opposite case KA+K&= К

d K ( г ) - I " R K A < R K 6 , P ( A ) - p [ 6 j (27)
4 В In the opposite case

R K A and R K b are the distances to the K-nearest neighbour for the

classes A and B.

The second decision rule of the nearest neighbourhood KNN2 allows one

to take account of the a pr ior i probabilities direct ly:

l« P(A)/R«>P(b)/R«
K V
 ' В in the opposite case

Both the Euclidean and the special metrics taking account of the data

structure may be used as a distance function 16 .

3. Hadron Identification by Energy Release in the Transition

Radiation Detector

The "PION" Installation has been functioning In the high-altitude station

"Aragats" of the Yerevan Physics Institute ever since 1977, one of its

purposes being the cross section measurement of the cosmic radiation flux

hadron interaction with various nuclei. Five trays of the transition radia-

tion counters are used to identify protons and ПГ -mesons, each consisting

of a radiator and a mu1t1w1re proportional chamber 17 .

To calculate the expected energy release of pions and protons a detailed

imitation model of the Installation is constructed 18 .

The imitation programme was used to form the training sample that would

help to outline the decision boundaries in the variation space of the choser

13



parameter. These boundaries determined the regions (the point sets) of deci-

sion making and the region of uncertainty. One may achieve the great re\labi-

lity of the Identification by enlarging the uncertainty region, but this

leads to reducing the detection efficiency because of the refusal t.*> make

a statistical decision when the parameter hits the uncertainty reoion. Tne

solution of this contradiction between the reliability and efficiency, ty-

pical of the statistical decisions problem depends in many respects on the

identification parameter chosen.

The geometric meari is one o* the first parameters suggested. This para-

meter used allows one to cut off Fomewhat the distribution tails as comoared

with the arithmetic mean end hence to contract the uncertainty region bounda-

ries 19 , but the scalar z = v Zi
 x
Z t * " Z »

s u b s t
*

t u t
*

o n
 ^

or t h e v e c t o r

response Z = ( Z i , Z
 3 ;
 ...Z

n
) results in the considerable loss of the dis-

criminative information.

Ref. 20 shows that the use of the information from all the installation

trays allows one to enhance significantly the reliability of the statistical

conclusions. The parameter that takes into account the Information from all

the trays of the transition radiation detector is the likelihood ratio

(ЗЛ)

where P<JJ and P p are the local estimations of the joint distribution

density of the values 2 , , *Z.
a
 ...,^-n. • provided that the particle re

leasing the energy 1s a pion or a proton, respectively.

The likelihood functions Par and P p are estimated by the training

samples obtained in the imitation or calibration experiments. The estima-

tions are carried out by the hystogram methods in the conventional paramet-

rical independence approximation of the likelihood function:

14



POT ( / 7 J ) зц ( , / Я ) Р9ъ{гг1ЯУРкп(гв/$)

The application of the Bayesian approach, In particular the nonpararoetri

ca5 decision rules bayed on the concept of the nearest neighbourhood, to ?hi

problem of the pion ano proton Identification, does not imoose rigid re-

oinrercents (of the (3.2)type) on the distribution function density type and

estimates the local density more efficiently.

The technique of calculating was as follows:

1. The formation of the training sample, consisting of the imitation pro-

gramme 18 realizations.

2. The identification of the "pseidoexoerimental" vector sets - also th*

simulation programme realizations.

3. The determination of the percentage error in classifying the "proton"

and meson" events.

The calculations were executed with the use of the first and second de-

cision rules KNN (2.6), (2.8). The training sample size, the classifiers

parameters, the number of the Installation trays, the energy of particles

all these varied.

Besides, the distance probability measures between the training sample

classes were calculated.

Via Bhattacharya distance 21

о» (3.3.

one can express the upper and lower Units of the classification expected

error



(3.4)

t H > Va " f/a (*" 4 b 6 j f / a

In the general case the integral (3.3) 1s calculated by the numerical

methods. If the distributions functions are close to the normal ones and

the covarfance matrices of both the training sample classes coincide, then

the Shattachaiya distance coincides with the Mahaionobis one 22 , that

can be calculated analytically

where Ji P and jUgj- are the averages of the training sample classes.

21 1s the common covariance matrix.

Figure lc, d presents the probability distance dependences on the par-

ticle energy and the number of the transition radiation detector trays.

Naturally, the separability of the training sample classes Improves and the

probability distance enlarges with the Increase of the experimental Informa-

tion vector dimensionality. The construction of the detector was chosen so,

that the.largest distance and hence the best discrimination are achieved at

the energy 1000 GeV.

Figure la, b shows the corridors calculated by formulae (3.5), where the

classification expected error must be involved.

In registrating the transition radiation by 5 trays of proportional cham-

bers the classification expected error 1s equal to .я* 10Х (the energy

1000 GeV), that allows one to classify reliably the cosmic radiation protons

and pions. The results of the classification by the ¥M1 and KNN2 decision

* The average error (P(5T p)+ p(pjjf )/г Is meant, the cost of misclassifica-

tion coincides with Its probability when using the simple loss function.

16



rules (the training sample size 1s equal to 500, the control sample size -

to 500, too) are presented In the same figures. It Is obvious that the

Ш
2
 rule provides noticeably better results than the KKHj one, due to a

more precise estimation of the likelihood function .

The dependences of the efficiency and error of protons and pions Identi-

fication on the К parameter In the KNNj and KNN
2
 rules are presented In

F1g.2. The training samples sizes are equal to 200. The classification re-

sults show that the training samples volume 1s sufficient and that the al-

gorithms convergence 1s attained at К « VTT

Fig.3 shows the results of the KNN
?
 rule comparison at К « 13 with the

curves of the efficiency dependence on the classification expected error,

the geometric mean 17 applied as a parameter. At the error fixed, one

may achieve a higher efficiency of registration In case the nonparametrical

decision rule Is applied. If, e.g. one limits the error pftf p ) to 10X,

then the pion detection efficiency will be equal to 75 and 85*. respective-

ly (In detecting by four trays).

Conclusion

The statistical decision optimization In the high-energy particle Iden-

tification problems Is achieved In the following ways:

1. By applying the Bayesian decision rules, that minimize the expected

average losses and take account of all the discriminative Information

between the particles of various types and of all the a priori Information

available,

2. By the likelihood function nonparametrical local estimation, allowing

one to reduce substantially the training samples sizes and to enhance the

estimation accuracy due to the special selection of the hystogram cell

17



form.

3. By applying the distance probability measures between the training sample

classes for the purposes of planning the experiment.

The author Is sincerely grateful to N.Z.Afcopov, T.L.Asat1an1. V.V.AvaMan,

A.T.Avundjian, A.H.DunaevsMI, S.P.Kazariaa, E.A.Nam1djan1an, S.G.Matinyan,

A.G.Oganesian and G.G.Ovsepian for the useful discussions and valuable

remarks.

Wg.I . vflit probability instances between the training sample classes,

the limits of the expected mieolaea i f ioat ioa .
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