
Р5ФИ-81Ь(45)-85

hbUShSffhS
ЕРЕВАНСКИЙ ФИЗИЧЕСКИЙ ИНСТИТУТ

A.A, CHILINGARIAN

STATISTICAL DECISIONS UNDER

NONPARAMETRIC A PRIORI INFORMATION

ЦН И Иатоминформ

EPEBAH-1985



Центральный научио-исследемтеньский институт информации
н технико-экономических исследований по атомной науке
и технике <ЦННИ«омти)ори) 1985г.



28И-61Ь(45)-65

A.A. CHILINGARIAN

STATISTICAL DBCISIONA UNDER

NONPARAMETRIC A PRIORI INFORMATION

The basic module of a statistic analysis applied programs

package is described. By means of this module tasks of choo-

sing theoretical model most adequately fitting/to experimental

data, selection of events of definite type, identification of

elementar particles are carried out. Por mentioned problems

solving, the Bayesian decision rules, one-leave out test and

KHH (K Nearest Neighbour) adaptive density estimation are

utilized.

Yerevan Physics Institute

Yerevan 1985



-..-се .-.с ••с

С Т А Е Е Я Ю З К Е Р З Е Б Н Л?:: H2aA?.i:.2i?;:-2c:-:3:.:

СПОСОБЕ: ЗАДАН::- АЛЕЮГне: :^ :с? : .^; : :

Приводится подробное описание основного "одуля пакета про-

грамм прикладного статистического анализа AZ-ZI . J по:.югьз мо-

дуля реяаются задачи выбора "еорегической :.:одэли, на^.олее zc-.

но описываюце2 экспериг.тента.зные данные, эыде.-ения cc^sr^i zz-

СОЕ взаиглодействля. ^ля oeze:-GL=i srz:: залач пр:-1".:еня;:гся :а:":е2::

сяие решащие прагл^та, ггро1:ед:."гы сксльзяпего зкзаг.-ена т.~- : :у-

чающеЗ выборке, --ЗС VX - ZZZSB?:~Z:-: соседе':' агг~?:гвнсе :::е:-">

вание ПЛОТКОС7Л вероятное"::.

Zt>essH ISt



words - nonparametric methods, pattern recognition,

classification, Bayeg risk estimation, multidimensional analysis,

probability density, local estimation.

Characteristics of physical problems - choice of theoretical

model most precisely describing experimental data, extraction of

events of the definite type, identification of elementar partic-

les and interaction processes.

Characteristics of statistical proolems- quantitative compa-

rison of multidimensional distributions, classification of distri-

bution mixture, training with the teacther,probability density

local estimation..

Procedures used - Bayesian decision rules, Bayes risk esti-

mation, "one leave out" test over the training sample, KMN(K-

nearest neighbours) adaptive method.



Long Write up

1. Introduction

The scientific method is characterized by the data classi-

fication, the study of their interrelation and the relation to

the past experience, accumulated in various theories and hypothe-

ses. Usually, it is impossible either to prove or to refute the

statements concerning the extent of confirming various hypothe-

ses, by the deductive method. However, the purposeful observation

of tha data leads to the empirical statements, that may be con-

nected with the theoretical ones by means of the rational induc-

tive conclusion rules /1/. In the general case these statements

are always probability ones, the inductive conclusion may prove

to be true in the given concrete case, though this certainty

does not grow into the logical truth, as in the case of the.de-

ductive conclusion.

The Bayeeian approach allows to express numerically the con-

fidence to the alternative hypotheses. The Bayesian procedures

are operational and applicable for the purpose of analysing prac-

tically the wide spectre of models and problems (see, e.g.2).

Having estimated the posterior densities one may organize the

procedure calculating the Bayesian risk which is used as the nu-

merical characteristic of the theoretical model and empirical

data closeness.

In the majority of applied regions the apriori information

is given in the form of training samples (TS) corresponding to

the alternative types or hypotheses. The basis of statistical

procedures using such a nonparametrie method of giving an a

priori information is the density local estimation. The module,

realizing the density adaptive local estimation and the calcula-

tion of the Bayesian risk by the training samples is the basic



one in the -flNI applied statistical analysis programme package/3/,

intended to interpret the experimental data and to plan the experi-

ments in coe-nic ray physics. By means of the package the process-

ing of data from the X-ray-emul3ion chambers ie performed with the

purpose of determining the chemical composition of the cosmic ra-

diation primary component and choosing -he model of strong inter-

action at superhigh energies /4/; determining the type of the cas-

cade process in the calorimeter installations of the PAIR-MiiTJSR

type /5/ and identifying the cosmic radiation hadrons registered

by the transition radiation detector system /6/.

2. The comparison of the alternative nypotheses. The measure

of the empirical data and model closeness

In view of the measurements complexity and indirectness the

only possibility to compare the experimental data and various

hypotheses on the type of strong interaction of the high energy

particles with the atmosphere atoms or on the chemical composi-

tion of the cosmic radiati m primary component is the imitation

experiment with the models of the radiation passage through the

atmosphere and detectors. The bases of the statistical analysis

are the training samples corresponding to the alternative models

representations. It is necessary to determine the model wich

is most close to the experimental data. The term closeness

refers to the coincidence, similarity, correlation, to the extent

of overlapping or any other variable used as the measure of si-

milarity or distance. The most natural measure of closeness of

'.V
1
 and Wp classes characterized by the density functions р(>̂ /й>,)

and р(ху&5
г
) , is the probability of misclassification of events

according to the distribution mixture:
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where P(u>t) and p(cô ) are the a priori probabilities, that may

be assumed to equal 0,5» if the number of events in the class CO,

equals to the number of events in class Ct>£. Naturally, for the

classification one must choose an optimal decision rule^providing

minimum errors at using the X feature complex. Such is the

Bayesian rule of the posterior deneitу maximum

P ( i / x > * p ( 4 / ) — x e

where

/ i r , P<toi) P C x / c ^ c ) ( 3 )

p(x/Ciî ) is the conditional density, or, if it is considered as

function of Cd-
L
 - the likelihood function

>
p(a>i /x) is the posterior

density, in which the optimal synthesis of the a priori and expe-

rimental information is realized. The probability of misclassi-

fication^at applying the Bayesian decision rule
v
coincides with tht

Bayesian risk as we use the simple function of losses (the losses

are equal to zero for the correct classification and are equaA

1 for any error). The risk at the point X is equal to

4.
6
(x)= rm.n[p(co,/x)

;
 p(tf>

a
/x)] ,

 u )

finally the Bayesian risk is determined by the expression:

where p(x") is the distribution mixture (I), and Г is the fea-

ture space.

However, it is impossible to use the formula- 4,5 for cal-



culating R
6
 as the analytical expression of the conditional

densities and, hence, the posterior ones, is unknown. Therefore,

instead of unknown densities we shall use their local estimations.

But, first of all let us distinguish four types of estimations

connected with calculating R /7/, R
M
 is the value obtained

with given T S of M value and a definite Ы. classifiers. E {"MJ

ia the mathematical expectation of that value, the averaging is

performed by the M size possible samples taken from the general

set. Re, is the asymptotic value of the TS infinite increase, and,

at last,R is the value corresponding to the "ideal" case of the

known conditional densities. R depends only on the densities, R%

R M J O U the TS size as well, R^ besi-

des, on the concrete TS with the fluctuations inherent to it. In

the subject region of interest one may not expect estimations of

the Rgg type or the effective averaging of E { R
M
j type, there-

fore it is necessary to choose a nonbiased and effective estima-

tion procedure. In calculating R to the classification-errors

cousedby the overlapping of distributions there are added the

errors connected with the TS scarsneas and the errors in the clas-

sifier training due to that scarsness-the errors in the density

nonparametric estimation. Тпэ method of density estimation will

be considered in the next paragraph, and now we shall consider

another main question - the method of using the training sample

in the procedure of the Bayesian risk calculation.

The three main methods are distinguished /8/: P-method:

the classifier is both trained and examined on the same sample,

i.e., first the conditional densities pC*/^) are determined by

TS, and then the classification is carried out; Si-method:

the TS devided into two equal parts, with one half the training

7



is performed, with the other-the examination. The P -method

decreases the Bayesian risk, the H -on the contrary decreasied .

Besides, the H -method does not use effectively the TS. The

U - method (leave one out) is free of such defects. One element

is removed from the sample, the training is performed without it,

then this element is classified and replaced in the TS etc, until

all the TS elements are executed.

The error empirical calculation /8/ wae one of the first

estimation procedures. Let us introduce a random variable

0 , if X is classified

correctly, (6)

1, in the opposite case

Let the empirical risk be determined by means of E(X^)

э _ 1 J2- .-*• тегг

Др.." M~ |м
 L

'"**""

where iHeii is the number of misclasaifications.

The estimate varianse equals

(в)

Another type of estimate is connected with the approximation of

the formula 5, the posterior densities in formula 4 are obtained

by local estimation of the conditional densities.

Г

It is interesting to note, that the variance of this estimate

proves to be less than that of the previous one.
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This result seems to be paradoxical, as in the second case the

information on the X vector true class is not used. This con-

tradiction is explained by that R may take any rational value

approaching R while R may take only the values equal to the

ratio of integers П)егг/М , this causing a large spread around R .

3. The Probability Density Local Estimation.

The density estimation nonparametrie methods have received

recently a large development effort /see, e.g.9 / mainly owing

to their simplicity and the absence of excessive requirements to

the distribution function form. The estimation histogram method

develops in two main directions. Firstly these are the Parzen

methods, in which the histogram function single step is changed

by a certain nuclear function, and, secondly, the K N N (K-nearest

neighbour) methods that adapt the cell size. The cells in that

case contain exactly К represenatives of TS and, hence, the den-

sity estimation in the point X will be obtained in the form of:

}
 Г — , (11)

where

__ С.Э7 Q K V " /

VK,M(X)=
 N

.r(N/2) (12)

is the volume of the region containing К representatives of TS,

nearest to the point X , M is the number of TS vectors (the TS

size or volume), N is the feature space dimensionality., /"(N/2)

the gamma«
i
^nction, и ^ - the distance to the К - neareat

neighbour of the point X in any suitable metric. Two metrics

are



are used; the usual Euklidian and the Mahalonobis /10/, where

the distance between points X and У is equal to;

where 21 is the TS covarians matrix. The use of the Mahalonobis

metric allows one to take into account the correlation informs -

tion; besides^the distances, calculated in this metric are in-

variant with respect to the linear transformations of coordina -

tes, this allowing not to take care of the scale of features.

The presence of unknown parameters in the nonparametric method,

prevents to apply them successfully. In the histogram method these

are the cell number and size, in the K N N methoda - the К pa-

rameter, in the Parzen methods - the nucleus type and width.

These parameters depend on the unknown density and volume of TS,

therefore, practically, the recommendations on their values are

often contradictions]., depend on the concret type of data and

have an iterative character of the cut-and-try. Vie have stated

a problem of such an dsvelopment of K N N methoda that the pro-

cedure should weakly depend on the parameter heuristic choice.

Рог the KNN density estimates not to depend so strongly on the

К parameter it was suggested to calculate the estimates simultan-

eously for the parameter several values. By means of a series of

estimates^
 м
 (х") j

;
i = 1,0./the averaged KNN3 estimate is cons-

tructed:

л

P. M - V
L I
M ( > T ) (15)
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This estimate uses a more detailed information on the X point

neighbourhood and provides the estimates that are more stable to

the fluctuations in the TS and to the Q. parameter choice.

However, in the row of estimates there may be signifi-

cant deviations from the true value, that distort the averaged

estimate. Therefore we have suggested to apply the order statis-

tics/12/^ By transformation of the row {^,м^
х
^} into a

variational onej/cy
M
(x)jwe shall obtain a density estimate in the

form of order statistics linear combination

^ а<;Р>им(;Г)
;
 (16)

(17)

At the corresponding choice of CL[ coefficients this estimate is

more stable to the fluctuations in the TS. The particular case

of estimations are the median estimates at which:

1 , if L = [Q/2>f,<Us odd

0, in the opposite case

If Q. is even the two middle order statistics are given the weight

0,5. The introduction of adaptive estimates is connected with

that
>
for the periphery points (being far from the distribution

mode) the simple KNN estimates with К = 2 т 5 (for the TS of

25 - 400) are optimal. As the density around the mode is high,

the К parameter increase will not lead to any significant in-

crease of the KNN containing region volume. Hense, the values

of the most terms of the variation row will be overestimated with

respect to the true density and the median estimates will not be

IJ



able to "choose" the best one. Therefore^at the periphery p' ints
y

that are chosen according to the value of the local region relative

size, the density is calculated according to the 3NN rule. The

peripherality criterion is represented by the ratio

where

(19)

and
 м

^ ~ (ХЛ, (20)

jv.
x
i) is the distance to the J - neighbour of the

point.

Finally the KSJN adaptive rule takes the form of:

Л

Р[а/г]+1,м
 i n t h e

 °PP°
a i t e

 case, 0. = M/2

Thus, the uncertainty in the К and G. parameters choice is

overcomed. In the adaptive method the t,^u parameters

choose does not depend on the unknown densities and the TS volume.

In fact, we carry out the method triple adaption by the TS. First,

by means of calculating the auxiliary parameter - the local re-

gion size - we select the estimation regime, then with the help

of the order statistics we choose the К parameter optimal value

and then select the cell size according to the К parameter.

4. The Information Input and Output.

With KNN2 module the tasks of comparing the theoretical



models with the experimental data, of the high energy particle

identification, of obtaining the probability density smooth es-

timates etc. are developed. The exchange of data with the module

is realized by means of formal parametrs. Though it leads to a

rather long list of parameters, the undesirable collateral effects

of the module on the main programme are practically excluded, and

the module operation high obviousness is provided. The module is

given the training sample B(N, M,L) where N is the space dimen-

sionality, M is the TS volume, L is the class number (for the

simplicity, here it is assumed that various classes are presented

by the TS with equal volumes), T(W,MP) is the control sample

M P the control vectors number.

The Lodule Control iai-auetert' гл-е:

KCL corresponds to the Q. parameter in the formulae 14,16,21,

usually KCL= M/2
?
NL(N)is the code combination,by means of which

the feature complex selection from the primary information is rea-

lized - the N dimensionality array, where code 1 in L -position

means the t - feature inclusion in the set under investigation.

(L) the L dimensionality array - the a priori probabili-

ties of the models being studied.

F(KCL)- the KCL dimensionality array _ the coefficients of the

order statistics, it corresponds to the formula 17. Usually,

- if L = Са/2И + 1 , a is "odd

t
 = <0,5 if UCa/2j,Ce/2M,Gl

 i e
 even

\p in the opposite case (22)

KL1 is the code of choosing the metric in which the distances
—>

between the X point and TS poins are calculated. The KLt=O

value corresponds to the Mahalonobis metric (13). KLZ

parameter, controlling the selection of the periphery points,

corresponds to od of formula 21. Usually KL2=3. R1(N,N,L)

13



is the covariation matrix of the TS classes.

During the operation in"one leave out" regime for Bayesian

risk calculation, the number of TS classes L=2, and in the

main programme the control sample is substituted by the training

one.

The number of events, separately, of the 1 and the 2 class^

classified as the representatives of the 1 and the 2 class by

means of the KNN method various modifications are placed in the

CL(L,KCL+2, L) array

C = 1,2,..., KCL is the simple KNN classification

• u= KCL + 1 is the averaged KNN 3 formula
CL.(L,l,L) = {

 (23)

\̂  L = KCL + 2 is the adaptive KNN formula 21.

The values of the Bayesian risk calculated by means of averaging

the posterior risk (formula 9) are restored in the DFM(KCL + 2)

array. The R values calculated with the method of empirical cal-

culation of misclassifications агэ restorted in the G (KCL + 2.)

array. The order of values in the arrays is analogous (23).

In the classification regime the numbers of classes to which

the control vector are referred, are placed in the array LUM(MP),

In the regime of constructing tne density smoothed estimates,

the density values for the L classes of TS, are placed in the

R(L,KCL*2) array. The coordinates in which the density is esti-

mated, are transferred to the module in the T(bl,MP) array.

/ Besides the presented arrays the module uses the operational

ones D(M,L), CCKCL + 2) , R2(N,N), R3(N,N,L)

The C,CN,flP
;
DFM arrays are of double precision.



5. Programni Testing

The programm testing was performed with the application ox

samples from the normal (Gaussian) distribution,, The choice of

this distribution is due to its exstensive use as a simple test

to compare various estimation methods-» as well as due to the sim»

pilciC.v of calculating the fiayesian risk for the normal sets,

RS -

where ф is the cumulative normal distribution function and

D M is the Mahalonobis ̂ stance (13) betwsexi ttie mathematical

expectationsof two classes. Usually several samples of the fizeci

volume were generated 4 ю or 25)» the density was estimated at

50 points of the interval (-5 - 5), the mean-square error MSE and

the integrated mean-square error IMSE were calculated by

the formula

(25)

1 J
IMSE = E{$MSE(xJclx}« yZ2 (^LMSE(-Xi)Ax) (26)

The choice of X points is performed uniformly over the X varia-

tion region. The figure shows the results of testing for the

comparison of K N N , KNN3 and adaptive estimation. The stan-

dard normal Density N(0,1) was estimated. Obviously, the adap-

tive estimations are much more precise than the ones could be ob-

tained with any К fixed parameter.

Table 1 presents the results of comparing the adaptive

15



method with the Parzen method and the maximum likelihood

with the penalty functions (the results of the latter two are

taken from the monograph 9). IMSE and it variance (figure in

brackets) are calculated by 2 5 independent random samples

from the distribution N(0,1) and the bimodal distribution 0,5N(-j£1)

+ Q.5N(1,5,1).The density was estimated in 50 points of the interval

(-5-5). The adaptive KNN estimation has shown somewhat worse

results. However, it should be noted that the parameters of both

the Parzen and M L methods have been chosen applying the infor-

mation on the true density, while the KNN method use only the

sample information. Therefore the slight deterioration of accu-

racy is compensated with usury by the procedure stability, as in

processing the real data, of course, the density analytical form

is unknown.

The Bayesian risk was calculated for the samples from the

normal distribution at various feature space dimensionalities and

iviahalonobis distances. The calculations were performed with the

use of ten independent samples. Table 2 presents the varianses

theoretical values calculated by the formula 8 and 10, the sampie

means and mean-square deviations MSE . A good agreement of

sample and theoretical values is apparent, and though the varian-

ses of R P values is less than that of R 3 , their bias leads

to that,their mean-square deviation is greater. Therefore, the

method of error empirical calculation is more preferable, espe-

cially, at the feature space great dimensionalities.
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