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Key words - nonparametric methods, pattern recognition,
classification, Bayes riek estimation, multidimensiona} analysis,
probability density local estimation.

Characteristics of physical problems - choice of theoretical
model most precisely describing experimental data, extraction of
evqnts of the definite type, identification of elementar partic-
les and interaction processes.

Characteristice of statistical provlems- quantitative compa-
rison of multidimensional distributiogs, clasgification of distri-
bution mixture, training with the teacther,probability density
local estimation.,

Procedures used -~ Bayesian decision rules, Bayes risk egti-

mation, "one leave out" test over the training sample, KNN(K-
nearest neighbours) adaptive method.
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Long Write up

1. Introduction

The scientific method is characterized by the data classi-
fication, the study of their interrelation and the relation to
the past experience, accumulated in various theories and hypothe-
ses., Usually, it is impossible either to prove or to refute the
statements concerning the extent of confirming variou. hypothe-
ses, by the deductive method. However, the purposeful observation
of thu data leads to the empiricel statements, that may be con-
nected with the theoretical ones by means of the rational induc-
tive conclusion rules /1/. In the general case these statements
are always probability ones, the inductive conclusion may prove
to be trus in the given concrete case, though this certainty
does not grow into the logical truth, as in the case of the.de-
ductive conclusion.

The Bayesian approach allows to express numerically the con=-
fidence to the alternative hypotheses. The Bayesian procedures
are opefational and applicable for the purpose of analysing prac-
tically the wide spectra of models and problems (see, e.g.2).
Having estimated the posterior densities one may organize the
procedure calculating the Bayesian risk which is used as the nu-
merical characteristic of the theoretical model and empirical
data closeness.

In the majority of applied regions the apriori information
is given in the form of training samples (TS) corresponding to
the alternative types or hypotheses. The basis of statistical
procedures using such a nonparametric method of giving an a
priori informetion is the density local estimation. The module,
realizing the density adaptive local estimation and the calcula-

tion of the Bayesian risk by the training samples is the basic
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one in the ANI applied statistical analysis programme package/3/,
intended to interpret the experimental data and to plan the experi-
ments in coegnic ray physice. By means of the packagethe process-
ing of data from the X-ray-emulsion chambers is performed with the
purpose of determining the chemical composition of the cosmic ra-
diat’on primary component and choosing ’he model of strong inter-
action at superhigh energies /4/; determining the type of the cas-
cade process .n the calorimeter installations of the PAIR-M&TER
type /5/ and identifying the cosmic radiation hadrons registered
by the transition radiation detector system /o/.

2. The comparison of the alternative. aypothesea. The measure

of the empirical data and model closeness

In view of the measurements complexity and indirectness the
only posaibility to compare the experimental data and various
hypotheses on the type of strong interaction of the high energy
particles with the atmosphere atoms or on the chemical composi-
tion of the cosmic radiati n primary component is the imitation
experiment with the models of the radiation passage through the
atmosphere and detectors. The bases of the statistical analysis
are the training samples corresponding to the alternative models
representations. It is necessary to determine the model wich
is most close to the experimental data. The term closeness
refers to the coincidence, similarity, correlation, to the extent
of overlapping or any other variable used as the measure of si-
milarity or distance, The most natural measure of closeness of
W1 and W2 classes characterized by the density functions p({ﬁno
and p(X/w;) , is the probability of misclassification of events

according to the distribution mixture:

P(X) = p(wi): p(Rfwr) + p(We) p(X/wz) (10

s}
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where P“DO and p(ak) are the a priori probabilities, that may

be assumed to equal 0,5, if the number of events in the class w,
equals to the number of events in class cba.Naturally, for the
clagsification,one must choose an optimal decision rule)providing
minimum errors at using the ;Z feature complex. Such is the

Bayesian rule of the posterior densit y maximum

- > el @ .
pler/X)$play/K)—X e (G (&)
wherae
P(@y) - p(X/wy) (3)

p(co,-,/x )= P(wq): P(X/@4) + P(wa)- P(X/wz)

P(X/w;) 1s the conditional density, or, if it is considered as
function of @; - the likelihood function)p@ui/i):is the posterior
density, in which the optimal synthesis of the a priori and expe-
rimental information is realized. The probability of misclassi-
fication at applying the Bayesian decision rule,coincides with the
Bayesian risk as we use the simple function of losses (the losses
are equal to zero for the correct classification and are equa .

1 for any error). The risk at the point §- igs equal to

6, - - -
(X)= min[p(w/X), p(w/X)] (4)
finally the Bayesian risk is determined by the expression:
B B, ~ - —
R® = { 2°(X) p(X)dX, (5)
r

where P(X) is the distribution mixture (I), and | is the fea-
ture spacse,

However, it is impossible to use the formula. 4,5 for cal-
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culating R® as the analytical expression of the conditional
densities and, hence, the posterior ones, is unknown. Therefore,
instead of unknown densities we shall use their local estimations.
But, first of all let us distinguish four types of estimations
connected with calculating RE /7/, R% is the value obtained
with given TS of M value and a definite of classifiers.E {R:}
is the mathematical expectation of that value, the averaging is
performed by the M size possible samples taken from the general
set, R:, is the asymptotic value of the TS infinite increase, and,
at last)R5 is the value corresponding to the "ideal" case of the
known conditional densities. RS depends only on the densities, Ri;
on the classifier <« too,E{Rfa}on the TS size as well, R:f, besi-
des, on the concrete TS with the fluctuations inherent to it. In
the subject region of interest one may not expect estimations of
the Ri type or the effective averaging of E {R:",,} type, there-
fore it is necessary to choose a nonbiased and effective estima-
tion procedure. In calculating ’25 to the classification-errors
coused by the overlapping of distributions there are added the
errors connected with the TS scarsness and the errors in the clas-
sifier training due to that scarsness-~the errors in the density
nonparametric estimation. Thz2 method of density estimation will
be considered in the next paragraph, and now we shall consider
another main question - the method of using the training sample
in the procedure of the Bayesian risk calculation.
The three main methods are distinguished /8/: P-method:
the classirier is both trained and examined on the same sample,
i.e., first the conditional densities P(iyh%) are determined by
TS, and then the clasgsification is carried out; H-method:

the TS devided into two equal parts, with one half the training



is performed, with the other-the examinastion, The P -method
decreases the Bayesian risk, thé H -on the contrary decreasied .
Besides, the H -method does not use effectively the TS. The
U - method (leave one out) is free of such defects. One element
is removed from the sample, the training is performed without it,
then this element is classified and replaced in the TS etc, until
all the TS elements are executed.

The error empirical calculation /8/ wae one of the first

estimation procedures., Let us introduce a random variable

¢ , ir X is classified
3 ()?,_) = correctly, (6)

1, in the opposite case

Let the empirical risk be determined by means of E(;L)

3 1 2 - mety
Ry." M 2= €(X\)="W (1)

where 1Me1? is the number of misclassifications.

The estimate varianse equals

2 1
> = W R°(1-R®) (8)

Another type of estimate is connected witnh the approximation of
the formula 5, the pcsterior densities in formula 4 are obtained

by local estimation of the conditional deasities.
& Ve g kv > Jd TN e P
R® = E{'L(x)}zg'z.(x)p(x)dx ~ 2= 2(X) =R (9)
r

It is interesting to note, that the variance of this estimate

proves to be less than that of the previous one.



2 1 B
Bpr =3 (1-R°) - Y2 R%/m (10)

This result seems to be paradoxical, as in the second case the
information on the ; vector true class is not used. This con-
tradiction is explained by that RP may take any rational value
approaching Rs while Rs may take only the values equal to the
ratio of integers mezz/M , this causing a large spread around Rs.

3. The Probability Density Local Estimation.

The density estimation nonparametric methods have received
recently a large development effort /see, e.g. 9 / mainly owing
to their simplicity and the absence of excessive requirements to
the distribution function form. The estimation histogram method
develops in two main directions. Firstly thuse are the Parzen
methods, in which the histogram function single step is changed
by a certain nuclear function, and, secondly, the KNN (K-nearest
neighbour) methods that adapt the cell size. The cells in that
case contain exactly K represenstives of TS and, hence, the den-

sity estimation in the point X will be obtained in the form of:

- K
D, X)y=z —————— (11)
ama (XD M- Vigm ()7
where ‘
—2a™de ()
Vigm (X) =

N T (N/2) (12)

is the volume of the region containing K representatives of TS5,
nearest to the point ; s M is the number of TS vectors (the TS
size or volume), N is the feature space dimensionality, r(N/e)
the gemma<fynction, dK - the distance to fhe K”'— nearest
neighbour of the point —X— in any suitable metric. Two metriecs

are

(S04



aere used: the usual Euklidian and the Mahalonobis /10/, where

—r e
the distance bsiwsen points X and Y 1is equal to:

- T -1 i e

Dy = (X-§) &T(X-T)

i
~b

%

where 2. i1s the TS covarians matrix. The use of the Mahalonobis
metric allcws one to take into account ihe corrslation informe =
tion; besides)the distences, calculated in this metric are in-
variant with respect to the 1linear transformetions of coordina -

tes, this allowing not to teke care of the scale of features,

The presence of unknown parameters in the nonparametric method
prevents to apply them successfully. In the histogram method these
are the cell number and size, in the KNMN methods - the K pa-
rameter, in the Parzen methods -~ the nucleus type and width.
These parameters depend on the unknown density and volume of TS,
therefore, practically, the recommendations on their wvalues are
often contradictional, depend on the concret type of data and
have an iterative character of the cut~and-try. We have stated
a problem of such an dzvelopment of KNN methods that the pro-
cedure should weak}y depend on the parsmeter heuristic choice,.

For the KNN density estimates not to depend so strongly on the
K parameter it was suggested fo calculate the estimates simultan~
eously for the parameter several values. By means of a series of

estimates{&rq(?)}} = 1,Q,the averaged KNN3 estimate is cons-
)

tructed:
A - 1 M
Pa,m (X) = E’% Pim (X)), (18)
A - L
Pim (X) = v (15)



This estimate uses a more detailed information on the x point
neighbourhood and provides the estimates that are more stable to
the fluctuations in the TS and to the @ parameter choice.
However, in the row of estimates there may be signifi-
cant deviations from the true value, that distort the averaged
estimate, Therefore we have suggested to apply the order statis-
tics /12/, By transformation of the row {P;'M(;)} into a
variational one{Pn_-,,M(’?)Iwe shall obtain a density estimate in the
form of order statistics linear combination

A Icl A

Pcsu,m (X) = Z g Py m (X)), (16)

t=1 !

(17

M
2
|

At the corresponding choice of Q; coefficients this estimate is
more stable to the fluctuatioms in the TS. The particular case

of estimations are the median estimates at which:

1, if i=[Q/2]+1Qis odd

a; =

0, in the opposite case

If Q is even the two middle order statistics are given the weight
0,5. The introduction of adaptive estimates is connected with
that,for the periphery points (being far from the distribution
mode) the simple KNN estimates with K =2 ¢+ 5 (for the TS of
25 -~ 400) are optimal. As the density around the mode is high,

the K parameter increase will not lead to any significant in-
crease of the KNN containing region volume. Hense, the values
of the most terms of the variation row will be overestimated with

regpect to the true density and the median estimates will not be

17



able to "choose" the best one. Therefore,at the periphery p-ints,

that are chosen according to the value of the local region relative

size, the density is calculated according to the 3NN rule. The
peripherality criterion is represented by the ratio
qM(xi)=9m(xL>PM ] (18)
where
1 vy -
(; = =5 z d ( L) (19)
£m i) M e J
and . M
a5 = X 20
\?M ML=1§>M(">7 (20)

—

wnere O;(X;) is the distance to the j'"~ neighbour of the Xi

point,
Finally the KNN adaptive rule takes the form of:
Pow(X)if Mu(X)>e, =3, 1 =3 (21)
Pm}n(x)z A

in the

‘p[ﬁ/u?]"'1 d

Thus, the uncertaiﬁty in the K and

overcomed. In the adaptive method

choose does not depend on the unknown

opposite case, G = M/2

G parameters choice is
the {,%,Q parameters

densities and the TS volume.

In fact, we carry out the method triple adaption by the TS. First,

by means of calculating the auxiliary parameter - the local re-
gion size - we select the estimation regime, then with the help
of the order statistics we choose the K parameter optimal value

and then select the cell size according to the K parameter,
4., The Information Input and Output.

With KNN2 module the tagks of comparing the theoretical

12



models with the experimental data, of the high energy particle
identification, of obtaining the probability density smooth es-
timates etc., are developed. The exchange of data with the module
is realized by means of formal parametrs. Though,it leads to a
rather long list of parameters, the undesirable collateral effects
of the module on the main programme are practically excluded, and
the module operation high obviousness is provided., The module is
given the training sample B(MN,M,L) where N is the space dimen-
sionality, M is the TS volume, L is the class number (for the
simplicity, here it is assumed that various classes are presented
by the TS with equal volumes), T(N,MP) is the control sample,
MP the control vectors number.

The i.odule Control Fkaraneters cre:

KCL corresponds to the B parameter in the formulae 14,16,21,
usually KCL= M/2,NL(N)is the code combination,by means of which
the feature complex selection from the primary information is rea-
lized ~ the N dimensionality array, where code 1 in fh-position
means the ifh- feature inclusion in the set under investigation.

AP (L) the L, dimensionality array - the a priori probabili-
ties of the models being studied.

F(KCL)- the KCL dimensionality array . the coefficients of the

order statistics, it corresponds to the formula 17. Usually,

1- it i=08/21+1, Q& is odd
F, = {05 it i=[(a/2],(G/2]+1,G is even
O in the opposite case (22)

KL1 is the code of choosing the metric in which the distances
between the X point and TS poina are calculated. The KL1=0
value corresponds to the Mahalonobis metric (13). KL2
parameter, controlling the selection of the periphery points,
corresponds to of of formula 21, Usually KL2=3. R1(N,N,L)
13



is the covariation matrix of the TS classes.

During the operation in"one leave out" regime for Bayesian
risk calculation, the number of TS classes L=2, and in the
main programme the control sample 1s substituted by the training
one,

The number of events, separately, of the 1 and the 2 class)
classified as the representatives of the 1 and the 2 class by
means of the KNN method various modificationa,are placed in the

CL(L,KCL+2,L) array

i=1,2,...,KCL is the simple KNN classification

L= KCL + 1 is the averaged KNN 3 formula
14. (23)

\ L= KCL +2 is the adaptive KNN formula 21.

CL(L,i,L)=

The values of the Bayesian risk calculated by means of averaging
the posterior risk (formula 9) are restored in the DfFM (KCL+2)
array. The R® values calculated with the method of empirical cal-
culation of misclassifications ar2 restorted in the G (KCL+2)
array. The order of values in the arrays is analogous (23).

In the classification regime the numbers of classes to which

the control vector are referred, are placed in the array LUM(MP),

In the regime of constructing the density smoothed estipmates,
the denaity values for the L classes of TS,are placed in the
R(L,KCL+2) array. The coordinates in.which the density is esti-
mated, are transferred to the module in the T(N,MP) array.

/"‘Besides the presented arrays the module uses the operational

ones D(M,L), c(KeL+2) , R2(N,N), R3(N,N,L)

The C,CN,AP,DFM arrays are of double precision,

4
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5. Programm Testing

The programm testing was psrform:d with the sppliecation «i
samples from the normal {(gaussian) distrivbution, The choice of
this distribution is due to its exstensive use sz & simple test
o gompsre vayrious estimation methods., as well as due to the sim-

pliciéy of caleuwlaiing the Bayesian risk Yor itha normal aetvs.
5 - . .
R = d{'J (“’ D . j/g by 2y

where ¢ is the cumulativ? noermal distribution funciican, wod
Dm 1is the Mahalonobisidﬁstance {13) between the mathematical
expectationsof two classes, Usually;several samples of the fixmed
volume were generated £10 or 25), the density was estimated at

50 points of the interval (-5 - 5), the mean-square error MSE and
the integrated mean-square error IMSE waere calculated by
the formule

7
J=

MSE (X)=E {E £’(><)‘P(x)]"'}&'j"zUSJ' (x)-p(x)1%  (25)

1

J I
IMSE=E{SMSE(x)dx}z ‘}'%(%Mse(xt)AX> (26)

The choice of X points is performed uniformly over the X varia-
tion region. The figure shows the results of testing for the
comparison of KNN, KNN3 and adaptive estimation. The stan-
dard normal Demsity N (0,1) was estimated. Obviously, the adap-
tive estimations are much more precise than the ones could be ob~
tained with any K fixed parameter.

Table 1 presents the results of comparing the adaptive

I5



method with the Parzen method and the maximum likelihood

with the penalty functions (the results of the latter two are

taken from the monograph 9). IMSE and it variance (figure in
brackets) are calculated by 2 5 independent random samples

from the distribution N(O0,1) and the bimodal distribution gSN(-]5,1)
+05N(%5,1).The density was estimated in 50 points of the interval
(-5-5)., The adaptive KNN estimation has shown somewhat worse
results. However, it should be noted that the parameters of both
the Parzen and ML methods have been chosen applying the infor-
mation on the true density, while the KNN method use only the
sample information. Therefore the slizht deterioration of accu-
racy is compensated with usury by the procedure stability, as in
processing the real data, of course, the density analytical form

is unknown.

The Bayesian risk was calculated for the samples from the
normal distribution at various feature space dimensionalities and
iiahalonobis distances. The calculations were performed with the
use of ten independent samples, Table 2 presents the varianses
theoretical values calculated by the formula 8 and 10, the sampie
means and mean-square deviations MSE ., A good agreement of
sample and theoretical values is apparent, and though the varian-
ses of RP values is less than that of R?® , their bias leads
to that,their mean-square deviation is greater, Therefore, the
method of error empirical calculation is more preferable, espe-

cially, at the feature space great dimensionalities.

16
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