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ABSTRACT: We describe a pearal nebwark classifier which is wsed to find the ooconal non-
linear gamma-ray domain in multidimensional parameter space. A vismalizarion 4 pproach
based on the study of all pessible 2-dimessional projections of the gamma-ray dQeniain is

uged to delineate the boundary of the domain and explain the physical significar - of the
lape. ’ i .

1 INTRODUCTION ;

The mest sensitive detections of VHE gamma-ray sources to date have been made
by the Whipple Collaboration using their “supercuts” ‘analysis technique on data ob-
tained using a 109-pixel Cherenkov imaging camera {Punch el al. 1991). This analysis
approach uses a relatively simple linear region in 4-dimensional parameter space to
define the gamma-tay domain (see section 2 for details). It is most unlikely that
such a simple shape is optimal for signal enhincement. Numerous alternative analy-
#is approaches have been tried on the Whipple Collaboration data (cluster analysis,
singular value decomposition, neural petwork analysis, ete. — see review in Fegan
ei al. 1094) but the simple "supercuts” spproach has proved surprisingly robust. In
this paper we present an alternative approach to applying neural network classifiers
1o this type of data, and show that some improvement in sensitivity is obtainable by
departing from the hypercabic shape. A simple method is nsed for visualizing and
interpreting the cutput of the neural network. '

7 THE NEURAL NETWORK CLASSIFIER

The conventional approach in applying neural network ¢lassifiers te Cherenkov imag-
ing data is to frst train the petwork using two classes of know events — ysually
simulated gamma-ray images and either simulated nucleonic images or real off-source
images {Chilingarian, 1991, Reynolds, 1301; Hillas and West, 1881). The optimal
network parameters are selected on the basis of maximising & “classification score™,
i, the ability of the network to assign each type of event to the correct class. The
main problem with this approach is that it assumes that the Monte Carlo ganma-ray

images correctly match the real gamma-ray images in every detail. Te o cnnvent
“his uncertainty, a different approach was used to- train the neural netw: i in
“is work. No simulations were used, Instead, the training was carried out ‘e
-nal and background sample (On-source data) and a pure background =: M-
tee data). In place of the “classification score”, the significance of the sanee
etween on-source and ofLsource data was maeimized. A 4:3:1 network 15ad.

ith 4 input parameters, 3 nodes in a single hidden layer, and one output ne . .0z
. total af 15 weighted couplings and 4 thresholds. Adjustment of these 10 parameters
affectively changes the boundary of the selected region in dodimensional | runeter
space
To [acilitate comparison with the “supercuts” gamma-ray domain, W« Lhe
.me four parametsrs as inputs to the neural network classifier: width, - is-




—

tance and alp.  The first two parameters a: csure of the width and length
of the roughly elliptical images, the ‘distance’ is 2 izasure of the separation of the
image centroid from the source position within = feld of view, and ‘alpha’ is the
angle between the major axas of the ellipse an. line joiming the centroid to the
source pogition. The “supercuts” hypercube wa. - 03 as our starting point:

0.073% < width < .
0.16%< length -

0.51%< distance - :
0.0°< alpha < 1%

All On and O Hml.s t'l'l‘.];m thh ‘region were [ed . hie newral network, which then
tried to find a betteF¥ignificance for the On-OFT difference by iteratively changing
the newural network couplings to ontline the best non-linear shape for the gamma-ray
domain. Data ob jﬂu‘s Crab Mebula in December 1993 using the Whipple
ration 1 %mn; telescope were used in tﬁé'oiptmnhm The
ase consls n , with a total cn-source time of 477 minutes.
m 16.87 on this database; this increassd th 1785
nnh'nr]t While this is not in itsalf a vet*_r arked
r mmthe]em EnCOUraging thaf’ sﬁlnalmlpmw_'nmt
:HJ&' |.mp|:m'|!d shape of the gmmﬁufrij“ﬂnnmn can bhe
readily m‘plmﬂ. as u].wli be discussed in the following section. Work is in progress
on optimising a leoser supercuts hypercabe region, thus allowing for excursions of the
boundary outside the supercuts domain as well as inside it.

3 'W'ISUAI..I[Zai.:l:‘lll':lr_l‘ffE OF THE NON-LINEAR GAMMA-RAY DOMATIN
A eriticism sometimea leveled Bgainst the neural network approach is that is‘operates
as a "black box™ — the cholce of values for the network couplings and thresholds
cannod be explained on a physical basis. If, however, we can find a means of visualizing
the resulting selected region in multiparameter space, and if we can ascribe physical
teasoning to the shape of the region, then the network ean be viewed simply as
an efficient numerical ahp‘muh to delineating a complicated non-linear boundary in
multiparameter space, ~ i

The visunlization approach used here is to hook a1 density profiles en 2-dimensional
projections of the multidimensional region, For an N-dimensional region, there are
(N-1)+(N-2)+.+1 possible 2-D projections. Thus, for the 4D parameter region in

question here, we view 6 2-D projections. Fig. ' :strates the approach for the two
simplest multiparameter shapes — the hyperc’ ol the hypersphere. The region
in question is first filled with a umiformly spac :h of points, and the points are
then projected and binned onto a 2-D plot. .+ shapes, all the 2-D projec-
tions look alike. Fig. 2 shows the & 2-D proje: af the On-Off count differences
within the supercuts hypersphere for the Cral la dataset. [t can be seen that
the distrbutions are highly non-unifarm — i were uniform, then no further

optimization of the region would be possible. The plot of ‘distance’ against ‘alpha’
is of particular interest in the context of dome.: cptimization. Mest of the effect
aceurs at’ relatively large distances and relatic nall alpha values. This is quite
reasonable; gamma-ray images at large distanc . tend to be more elliptical, with
well-defined major axes. Thus there will be les: rtainly in the shower crientation
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and the alpha distribution will ba Rasrower for sich events. This 3065 not mean that
rejecting all events with lﬁmd.htunuvﬂnglgﬁiﬂm alpha values will lead to im-
proved sensitivity; sach simple l:nuur:ntl: ulk ‘give fise to ancther hypercube, and
the supercuts hypereube is already close to optimial for this datal™= - -

To visualize the optimal non-linear nponu’nlmhd by the neural network, we
apply the network which was traine ﬂfgﬁ&-ﬁ hﬂfﬂi'_ﬂah':h'a nniform mesh
of points filling the supercuts hypereube., Projettions onto 2-D plots will then show
which edges of the hypercube have been eroded to improve the shape of the gamma-
ray domain. The § 2-D projections are shown in fig. 3. Not surprisingly, the new
domain departs from linearity at high alpha values and large distances; from abave,
gamma-ray with large distance values should have tighter alpha values. Similarly, we
observe a deficit in the region associated with large alpha values and large lengths;
such events should have well defined major-axes and thus tighter alpha values. Finally,
we note a less pronounced deficit in the region associated with large alpha values and
small width values; again, highly elliptical images will tend to have large lengihs and
narrow widths, so the same arguments apply.

We conclude that the nevral network approsch provides an efficient method of
obtaining complex non-linear gamma-domain regions, revealing nomtrivial structures
in multiparameter space, Study of 2-D projections of the selected region show that i
is physically reasonable, and thus helps dispell the impression that the neural network
approach operates at a level which does not permit visualization or interpretation.

We wonld like to thank other members of the Whipple Caollaboration for permission
ta 1:se their Crab Nebula data in this study.
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Figure 2: 2-D projections of Crab Webula signal within Supercuts hypercube.
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Figure J: 2-D projections of region selected by > ! Network,
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