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1. Introduction

The haste goal of this letter is to report develop-
menl of a unificd theory of statistical infercnce,
based on nonparametric models, in which various
nonparametric approaches (density estimation,
Bavesian decision making, error rate estimation,
feature extraction, sample control during handling,
ete.) are used.

For a nonparametric model, that is a model in
the form of a stochastic mechanism, whereby the
data are generated, the underlying log-likelihood
function cannot be given explicitly [1]. These, in a
convenient way intractable statistical models often
arise in modern high-energy physics experiments,
where very sophisticated Monte Carlo models arc
being used.

A cosmic-ray-physics experiment, used as an
example for the technique proposed, concerns the
Primary Cosmic Rays (PCR) composition deter-
mination by the Extensive Air Showers (EAS)
data [2].

A Monte Carlo study of the bootstrap method is
also presented.

2. Classification of the distribution mixture

Let us consider the stochastic mechanism (A4, #)
which generates the observation v in a multivariate
feature space V (v is a d-dimensional vector of
values measured experimentally, ¢ is the dimen-
sionality of the feature space, ve ). The basic
states space A consists of alternative hypotheses or
classes (for example, different primary nuclei). We
know no law of nature like (A, 4}, ihat is why, to
determine the mutual probability measure on the
direct product of 4 and V spaces, the total Monte
Carlo simulation of the phenomenon under inves-
tigation is performed, including experimental data
regisiration and handling.

The set of d-dimensional # vectors obtained in
simulations is the analog of the experimentally
measured values of . But, as opposed to experi-
mental data, it is known to which of the alternative
classes each of the events belongs. These ‘labcled’
events include a priori information about dynamics
of the process under investigaiion, which is given
in 4 nonparametric form, as Mnilc samples. The se-
auence {u;,f, ), where i=1, ..., M, j=1,...,L,
15 a class index, we usually call a training set or
sample (TS) which is also denoted by (A, ).
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Since both physical processes of particle produc-
tion and those of registration are stochastic, only
by careful measurement of probabilities can we
gain an understanding of the phenomena under in-
vestigation. The high energy physics data analysis
is uncertain in the sense that the probability dis-
tributions concerning the alternative hypotheses
usually overlap significantly.

The only thing we can require when classifying
a distribution mixture is to minimize the losses due
to incorrect classification to some degree and to
ensure use of a priori information completely.
Such a procedure is the Bayes decision rule with
nonparametric estimation of the multivariate prob-
ability density function, which, when using a sim-
ple loss function (the loss is zero in case of correct
classification and it is the same for any error),
takes the form:

A = nv, A, #) — argmax{P(4,;/1)},
i=1,...,L
where P(A;/v)~ P, P{(v/A;) are a posterior densi-
ties, P(v/A,) are conditional densities which are
estimated by 1S (4, ) using one of many non-
parametric methods available [3], L is the number
of classes.

To estimate conditional densities, we wsed
Parzen's method with automatic kermel width
adaptation. Tn this method seme probability densi-
ty values are calculated which correspond to dif-
ferent wvalues of method parameters. Then the
sequence obtained is ordered and the median of
this sequence is chosen as final estimate. Depend-
ing on the value of the probability density in the
vicinity of v, due to stabilizing properties of the
median, each time we will choose an estimate with
a width most fitting for that region [4]), The proba-
bility density is estimated by:

2.)

M
P(u/A;} = 1/2n% by E - ,{MdW}

i= (2.2)
fel,..., L

where d is the feature space dimensionality, M; is
the number of vectors in the 7th TS class, is the
distance to the jth neighbor in the Mahalanobis
metric:

r,=-u) R\ -u), (2.3)

782

PATTERN RECOGNITION LETTERS

December 1950

where R is a sampling covariance matrix of the
class to which u; belongs, W, are the event weights,
h is the kernel width.

The classification methods, like all the statistical
ones, include a procedure quality test as a neces-
sary element. This stage beside all the others is also
necessary for the determination of the mixture pro-
portion. The most natural procedure quality esti-
mate is Lh¢ crror probability which depends on
both the degree of overlapping of alternative
multivariate distributions and the decision rule
being used (Bayes decision rules provide minimum
error probability as compared to any other):

Ry, = E{Bln(v, A, #)}, 2.4
where

_ 0, for correct classification,
Blniv, A, &) =

1, otherwise

and £ stands for mathematical expectation, The
expectation is taken over all possible samples of
volume M and over the whole d-dimensional space
of measured valucs,

Since we do not know Lo which class the experi-
mental vectors belong, we obtain an estimate of
RY via TS:

Mrs

Ry= . - T 6lgniu, AP, (2.5)
TS i1

i.e., we classify the {u;} TS and check correciness
of classification over the index of the class £,
J=1,...,L. However, as numerous invcstigations
have shown {e.g., [5]), this estimate is syslemali-
cally biased and hence, a cross-validation estima-
tion is preferable:

Mis
Ry, = I';_ E 6{t;, 7, A, Piy)h (2.6)
I i=1
where A, #,, is a TS with a removed /th element,
which is classified. This estimate is unbiased and
has an essentiafly smaller r.m.s. deviation. The
advanlage of R}, is especially notable when the
feature spacc has a high dimensionality [6].
Note, that we have the possibility to estimate the
error probability of various Lypes by classifying
various TS classes {u;, ¢}, i=1,..., L.
By R,; we denote the probability of classifying
the jth class events as belonging to the jth class
(misclassification).
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Now let us estimate the a posterior fraction of
various classes in the distribution mixture.

It is known [7] that the best estimate of the a
posterior fraction {in case of uniform a priori in-
formation and abscnce of systematic errors) is the
empirical fraction

P = M,/Myg, @.7)

where M; is the number of events classified as
belonging to the class A,, M,,, is the total number
of events. It can be shown that with account of
classification errors the fraction (proportion) can
be obtained as the solution of the following set of
linear equations:

: ‘
(1 -X Ru‘)p:'*‘ Y. PRy =P,
Fi ki

2.8
i=1,...,L.

In the first sum summation goes over j, in the
second sum over k. All estimates of R,; and P/ are
obtained over one and the same TS using the same
decision rules.

The accuracy of the estimates is defined by the
TS size and the number of control data as well as
by the value of the classification errors, which
present the ‘quality’ of discrimination in the chosen
feature subset. Note that the sct {2.8) is a poorly
defned sysiemn and at large valucs of classiflication
errors the solutions of the set are unpredictable
and hence, the choice of a feature combination
providing a high percentage (=60%) of correct
classification is a necessary preliminary stage.

3. The bootstrap procedure of traction estimation

As we have shown in the previous section, to
eslimate the proportion of various classes in a
distribution mixiure, beside ¢lassifcation of a con-
trol sample by a TS, it is also necessary to calculate
the misclassification coefficients, R;;. The error in
determination of the fraction is a function of the
errors both from classification and in determina-
tion of R;;.

The possibility to decrease the bias and variance
of misclassification rates estimates was discussed
in [8], where it was mentioned that it is possible to
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improve the accuracy of the Ry; estimates, if the
TS size is large cnough to separate the TS into
independent subsamples.

Unfortunately, time consumption per model
event generation increases abruptly with primary
particle energy and the TS size is always limited for
high energy events.

‘Thus, the problem of an efficient use of the
information contained in training samples is very
important for cosmic-ray and accelerator physics,
since the classical sampling models do not allow to
extract the whole information carricd by a sample.

The meihods of sample control during handling
are widely used in Lhe last few years. One of these
is the leave-one-out-for-a-time test considered in
Lhe previous section, which allows to decrease the
sample bias. A more efficient procedure actively
developing in both applied and theoretical respects
in the last decade is the bootstrap which lies in
replication of the initial sample very many times
by means of random sampling with replacement.
‘I'he thus ebtained conditionally independent boot-
strap-replicas in many respects stand for independ-
ent samples from the general population (under the
condiiion of sufficienily large size of the initial
sample), In fact, the hootstrap substitutes the un-
known general population by a single sample.

The theoretical basis of the bootstrap method is
the analog of the central limit theorem (CLT)
proved in [9]:

P{Vﬁ(#B_HM‘) < ISM | Kiyors ,XMV} 4 Gb({), (3.1]

when M, B — co, x|, ..., X are independent, identi-
cally distributed (iid) random quantities, @({) is a
normal {Gaussian} distribution, u,, and S,; are
sample estimates of the first and the second
moments,

B
g = 'El ,uf/B,
=

and

Mo

ur=Y M
i1

is the jth bootstrap replica’s mean., Moreover,

analogies between sampling and the bootstrap are

valid also for many other statistics. Referring 1o

110], we shortly summarize the main idea of the
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new procedure: the bootstrap-moments (denoted
by FE,.o,) are introduced, which in many cases
substitute the statistical moments calculated ac-
cording to a distribution function (in most cases of
interest it is unknown).

Owing to the fact that the bootstrap is very im-
portant for high-energy physics, and to investigate
its possibilities for finite samples and a limited
number of bootstrap replicas, we have carried oul
an investigation with the purposc Lo calculate the
bootstrap expectation (u7— u), a ‘butstrap’ CLT
test, and calculation of boolsirap expectations of
the standard deviation of the mean iid random
variables, 82=a2/M. To do this we used samples
from the standard, normal distribution N{0, 1); the
sample size varied between 25 and 1000, the num-
ber of bootstrap replicas in a series was from 10 to
2000. The mean was calculated for each bootstrap
replica, and for each bootstrap series the boot-
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strap-estimate of the mean standard deviation, é,,
was calculated.

A round of recalculations including 100 series of
the same size has been carried out using different
initial samples; the obtained data were averaged
and the mean-square deviations were calculated.
The results of investigations, which are present in
Table 1, illustrate the validity of ‘butstrap” CLT
and consistency of using the bootstrap expecta-
tion, Although the mathematical theorems were
proved Tor lhe asymptotic cases M, B-—o0, even
with small sample sizes and small numbers of boot-
strap replicas (M, B = 50}, the obtained estimates fit
to the expected theoretical ones.

There are two ways of distribution mixtere co-
efficient estimation: (i) to obtain the bootstrap
estimate of the misclassification coefficients RE,-,
then classity and estimate the fraction, or (i)
carry out fraction estimation over each beotstrap

Tabte 1
Boolstrap expeclations and bootstrap standard deviations of sunpling statistics
B 10 50 100 204}
Eud ttn—teast —0.0152 0.0031 —0.0048 —0.0003
M=125 Geltin ty) 0.0639 0.0251 0.0174 0.0160
s (1.2 Eld,.) 0.1891 0.1974 0.1929 0.1977
ald.) 0.0560 0.0300 0.0031 0.0028
Eudttn—tirg} —{1.0024 ~0.0023 {.0003 —(.0001
M=350 Oodtin—tiag} 0. 0402 0.0227 0.0148 0.0097
den 0.1414 Eldyt (. 1481 0.1398 0.1396 0.1395
o} 0.0286 0.0182 0.0167 0.0154
E*{;fﬂ—ﬂ_”} 00171 —0.0010 (. 0404 — 00008
M=100 Il M — Hag) 0.0323 0.0152 0.0101 0.0066
A =01 Fldg} 0.0897 0.0959 0. 1000 0.0988
aid,) 0.0212 0.0107 0.0097 00,0086
o TP TIvY 0.0038 0.0017 00001 0.0000
M 200 7o g —Uast 0.0231 0.0107 0.0082 0,0048
o =0.0707 Fid,} 0.0593 .Na92 (0694 0.0700
aid,} 0,0154 0.0078 0.0063 U.0049
Efpy—ting} — 00018 0.0007 0.0004 0.0003
M 500 g — i} 0.0113 0.0072 0.0040 0.0032
Bsgy = 0.0447 E(é,} 0.0430 0.0452 0.0442 0.0446
aid.} 0.0095 0.0043 0.0033 0.0024
E*{ HE '“,NM} 0.0038 0.006¢1 10,0002 00003
M= 1000 o, { ity — tar) 0.0079 C 00050 0.0030 0.0022
e =0.032 E{d,} 00322 00317 00316 0.0313
aldgt 0.0073 {1.(033 {10622 aomT
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replica, then obtain the fraction and the standard
deviation bootstrap expectation. The sccond way is
preferable, because obtaining of the standard
deviation in the first case is time-consuming: the
error propagation formulae obtained by the
REDUCE symbolic manipulation program occupy
several standard sheets in case of classification into
tour classes.

Finally, let us formalize the bootstrap method of
the distribution mixture coefficient estimation. Let
us define the solution of the set {2.8) as:

P=P{P,....PY=Flu,ZnwAP)}. (3.2}

This solution is a complicated function of ex-
perimental data and the TS as well as the decision
rule # being used. By several TS bootstrap replicas
we calculate the boolsirap expectation and the
bootstrap standard deviation of the mixture coetti-
cients £, which are used as estimates of the trac-
tion of different nuclei groups in the primary tlux.

4. Resulis of calculations

To lest the method, the generated events werc
grouped in two. The first were used to create a TS
and the second as conirol events. The EAS charac-
ieristics —number of clectirons, number of muons,
agc parameter (N, N,,, $)—were used in the events
classification. The TS consisted of four classes in
accordance with the primary nuclei type (p: pro-
tons, g-particles, CNO: nuclei with atomiic number
A =7-16, H: nuclei with atomic number A =24-27,
and VH: nuclei with atomic number A = 50-56).

Table 2 presents the Bayes error matrix obtained
as a result of a leave-one-out test over I'S. The
diagonal elements of this matrix show the proba-
bility of correct classification and the nondiagonal
clernents represenl ithe probability Tor misclassili-

Table 2
The Bayes error matrix obtained by the leave-one-nut method

p CNO H VH
p 0.798 0.102 0.067 0.033
CND 0.127 0,638 . 105 0.080
H 0.072 0.113 0.651 0.124

VH 0.034 (1.090 0150 .726

PATTERN RECOGNITION LETTERS

December 1590

Table 3
Recovered tactions of tour groups of nuclei (W, is a ‘truc’
fraction, B, is a recovered one)

N1 Wi i Woml TuiWon}
p 200 0.370 (0.345 0.038
CNO 188 0.272 0.299 0.067
H 154 0.168 0.232 0.057
VH 163 (. 189 D.194 0.8

cations. It is seen from Table 2 thal the percentage
of correct classifications amounts to 70-80%.
Classification of ‘boundary’ groups {protons and
iron group nuclei) is essentially better than that of
the intermediate groups.

Table 3 shows the recovered nuclei fractions
obtained by classification of control events for one
interval over N,. The errors presented are ob-
tained by the bootstrap procedure. As is seen from
this table, the proposed method allows to deler-
mine the fraction of protons and iroen nuclet in the
incident flux with quite a4 good accuracy.
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