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A new method of analysis of mulliple fnal states in high-energy physics is described. [0 can be recommended for the preliminary
analysis of events with high multiplicity and is able to indicate the emistence of various bound states. The method allows a
visualization of multidimensional data, this being particularly important in the dialog mode of data handling. New algorithms based
on the estimation of the multivariate probability density are used for the determination of corrclation dimensionality, These
algorithms are more suitable and precise as compared Lo the earlier suggested ones, dus to the natural scale introdeced and the
account of the distribution fenction of the correlation integral. The serviceability of the algorithms is checked in & series of Monte

Carlo sirnulations.

L. Introduction

Recently, great success in the description of complex
system behaviour was achieved by using geometrical
representations. The generalized dimensionality origi-
nally introduced by Renwi (1] and applied by Grass-
berger and Procaccia for the analysis of chaotic be-
haviour [2] proved to be highly fruitful in various appli-
cations, beginning from the descniption of crystal growth
[3] up to the star cluster [4] and quark—gluon plasma [$).

On the other hand, the development of Mandelbrot's
ideas about the fractal character of MNature [6] also
brought a new understanding of physical experimental
data.

The kinematic information on the high-multiplicity
reactions sharply increases and, simultanecusly, the de-
tection of so far unknown mechanisms of production of
a given final state becomes more difficult [7]. The
effective mass distribution docs not allow any definite
conclusions,

All the available information on the reaction consists
of the values of all possible random varizbles induced
by this reaction and measured in an experiment. Events
are concentrated in relatively small regions of phase
Space,

The essential inhomogeneity and complexity of the
event patterns in phase space gave us the idea of using a
fractal approach for the analysis of multiple production,
[n a wide sense a fractal scl is a set whose structure is
related to dimensionality [8). Fractal analysis proves to
be useful every time when the system's behaviour is
characterized by attractivity. That is. final states are
grouped in some bounded subspace called attractor,
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whose dimension is less than that of the initial phase
space [9].

It should be mentioned that there exist many differ-
ent definitions of dimensionality and specific ways to
calculate them for finite sets [10], most of which go back
1o the first generalization of the dimensiomality notion
by Hausdorf [11]. However, for the cases important to
phyvsical experiments, most of these definitions are
equivalent; therefore we shall prefer the methods allow-
ing one 1o consider large dimensions of the inital space.

Strict mathematical definitions of dimensionality as
well as references to the basic works can be found in
ref. [12].

Highly useful proved to be the approach worked out
by Procaccia et al. and Young [13,14], which allows the
generalization of some of the most popular definitions
of dimensionality and creates a numerical method of
calculation.

Note that the aim of the fractal approach is not o
provide us with a ready theory but io formulate em-
pirical Tacts in terms of geometry [15] for a subsequent
comprehensive analysis.

2, Comrelation dimension calcalation

Procaceia showed that there exist an infinite number
of generalized dimensions characlerizing an attractor:
Al
limin ¥ P9/n 1, (1)
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in the d-dimensional initial space where an embedded
attractor i divided into M{/) cubes (boxes, cells,
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bins, + ++ 3, and in each of them a probabilistic measure
P. is determined; the cube volume equals /4, where g is
an arbitrary real number. One can easily show that For
g=1 the generalized dimension coincdes with the
self-similanty dimension f2:

o ]“[MkﬂfMA}

2
In{l, .,/ 1) (2)

where M, is the number of sell-similar ohjects pro-
duced at the Kth scale fragmentation step. The self-sim-
ilarity dimension in is turn s closely related to the
Hauvsdor! dimension £

D,=D _.=—lim lim In M(!)/1n{l}. (3
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where N is the number of points on the attractor, i.c
the sample (set} size.

Practically, the dimension is determined as a slope of
a straight lime compecting some [ values with M7}
values on a double-loganthmic scale. To do se, one
should of course, start with a series {f 1 i=1,2,-- &,
& = 3 and calculate the relevam series of { M({/ )} - the
number of cells of the volume /7 including all the points
of the studied sen,

At g == 1 the generahized dimension reduces o an
information one:

M
omD ,=1lim lim } P InP7/In/ (4)
P N—e g
Most important for the applied cases is the correla-
tion dimension 2. corresponding to the case g = 2:

ML
D=0 ,=1lim lm Y PEm L (5)
PO N 2

The correlation dimension is important, frstly, be-
cause it charactenzes the local structure of the attractor,
and secondly, because. as will be seen further on, 1t can
readily be caleulated for dimensions of initial space
d= 1 On the other hand, the algorithm of direct
counting of cells is rather tme-consuming and 15 ap-
plicable only for the cases when & <2 Clearly, at
= 10 and fragmentation of each axis by 10, already at
the first step the number of cells amounts to 10™, and it
is impossible 10 develop an adequate numerical method
operating with such a bulk of information,

One can see from eq. (5) that the correlauon di-
mension s determined from the Cdependence of the
number of set points being within distance [ One
should start out with the values of [/, } and caleelate for
each of them the so-called correlation integral C{J) -
the numerator of eq. (51 In refs, [16,17] some simplifi-
cations of the method for correlation dimension calcula-
ton are suggested. Using the ergodic theorem one can

make a replacement:

AT ] hl

DB g Mo (6)
i=1 o

where .JEI is the probability 1o find the point of the
studied set mot simply on the attractor but inside the
hypersphere of radivs !, centered al some other point of
the studied set.

Further, analyzing egs. {1}, (5) and (6}, one can show
that the correlaon integral C(f) is simply equal to the
mean number of points inside the hypersphere of radius
! centered at the set point. And finally the correlation
dimension can be calculated from the f~dependence of
the correlation integral:

Oy =, (7)

Caleulating the values of the correlation integral for
seversl (= 3) values of /4, we can estimate 5. as the
slope of the straight line connecting C(/) and { on a
double-logarithmic scale. Numerical calculauons are
carried out for a fixed series [/} and some finite N,
However, there are no instructions regarding the choice
of the sequence {1 .

We shall try to overcome this drawback by introduc-
ing some natural scale, Let us replace [ by R, ineq (7)
— the sample-averaged distance to the Kth nearest
neighbour {KNMN):

C{Ry) ~ RE. (%)

Motice that the lefi-hand side is equivalent 1o the
mean number of sample points inside a hypersphere
with radius egual 10 the average distance to the Kth
neighbour, Le. it equals the number K| 5ot

K~ Ri. (%)

Hence, the modified algorithm defines B as the
slope of the K-dependence of R, on a double-logarith-
mic scale, (We usvally take {K,}=12-.- 2 &
= ' ; the study of the N-dependence of ¥ in the
estimation of the probability density is presented in
refs, [18.19]).)

Thus. we introduce a naturzsl scale — the average
distance 1o the nearest meighbours. As wall be seen
below Trom the simulation, the choice of { K} values,
in contrast 1o {4, }, is not wo critical for the dimension
estimation.

3. KNN estimation of probability density; local and
global dimensionality

Consider the KNN estimation of the probability
density which is a development of the well-known histo-
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gram method [21.22]:

_k
ME (x )]

pilx )= (10)
where V{x,) is the volume of o d-dimensional sphere
conlaming the & nearest to x, representatives ol the set
studied [, belongs o the same sel),

L

il = FRE TE = et 11
wlm ) = F R d a2+ 1) (21}
where K, 13 the distance 1o the Kth nearest neighbour
of x,. F(3is the gamma function, From egs. {10} and

(11} we can readily ohtain (see ref. [227):

1 2 Lo
In Rn(‘-]'gln}" P NE p ()] : (12}
Fag. (125 carmat be zaolved relative 1o o simee the esn-
mate of @ x, b as one can sco from og. {10), depends on
K. Therelors, ene can average 8, over the whole sam-
ple, according ta the distribution funetion:

CeR
1)

fi (R} = CaR? expl — CR?). (13}
where = Np{aiF,.

In the wppresimeiion of small B and large & we
obtain the following equations:

- 1
o Gy 4 In Ry= I K+ comst, {14}

Gy o= K"K/ T{ R+ 1),

where R, is the sample-averaged distance to the Kth
nearest neighbour and “comzt™ 15 independent of AL

The differenee of this cguation from the previous
ones (235, {71 and {99, echtained by a completely differ-
ent approach, consists in the sa-called irerative addition
&, which 15 close 1o zero for all K and &, Therefore,
wr solve this equation iteratively, first assoming &g ; —
i, and then, having ohtained 4, we caleulate 7, | and
determing the value of g, . We shall stop the iteranons
when o s practically constant.

Such a venfhicanon of & estimates s connacted with
aversging of the correlafion integral. The correlation
integral - the pumbar of sample points inside the
hypersphere of fxed radius - 15 a random vanahlc
belommng eo the binomial distribution with parameter
#ix ) (the probability for the sample point we fall within
this hypersphere).

Thus, we obtain the method of dimension estimation
for 4 fimiie sct of cxponmental cvents, and wc shall
apply it 10 the anabysis of multrple production.

It should be noted thar our estimate 15 a glahal
csumars, Le. the whole samplc 15 charactenzed by onc
nurber, thowgh local differences are possible, Froom this
poni of view, Incal dimensionality is much more inier-
esting, smee we shall be abie to deotect local inhomo-

geneities corresponding to vanous dynamical mochas
nisms and, possibly, o isolate resonance production.

Comsider ag. (12) again. Apart From sample averap-
g, there s wlso ancther way o gel o lnear eguation
for determining the dimension. For this, one must choose
the { K} series such thar the density estimates arc very
close and, hence, the dependence of g (x) on K con be
ignared. Tollowing these chasen values of [ K ) and the
gorresponding { By, (x.0%, voe can corry oul the esti-
mate of the local dimension at a poant x.

Ag the density estimatcs depend on dumension, It s
pecessary ¢ settle an teratve procedure, Le far the
current dimension value chonse agam the series [ K],
corrosponding o the values of density close (o each
other, and so on, and interrupl the iteations when the
value af the dimension is practically eonstant. Usually,
2-3 ierations are enough to satisly
|d,,, —d,| <00l

4, Resulos of the simuloiions

We apphicd the devcioped tochmigque to determine
the dimwenzion of many standard seis (Coch curee,
Serpinsky carpet. Cantor set, etc), and obuained osti-
males in pood agreemenl (laking ol accouni  the
limitgdnese of penerated samples) with theoretical val-
ues,

The simulations of multiple production were airmed
at a compariaon of © pure states’” - reannaance produc-
tom events and events when interaclions belween sec-
ondary particles are aheent, Apart from that, the possi-
hility of indicanon of resonance producton events was
studied. Two chunnels of 18 GeV o' hadron production

were considered :
{i) = p-oprtata”

2y wmTp == gt{T64 AT H{1236) . 15
R (15)

We penerate samypdes according o reactions (1) and
(2 with account of the resonant width and a given
momentum resahimon. Further, by oeq. {14, we de-
termined the dimension for vanouws values of 2 and N
Averaging was performed over 10 independent samples
of fixed size. As is scen from figs, 1, 2 wnd o the
dimension criterion allows ws to distinguish with high
precigion between various dynamical mechanisms of
final stute production. The valwes of Lhe eslimates age
stable with respect to the chaice of method parameters,
and the sample sire af 2K seems 1o be sufficient for 4
relighle recognition, The crrpry of (he estimutes inerease
with the dimension, which agrees wath the practice of
multivanate analyss |23] The errors decrease with &
anid ¥, anyd thas testilies the consistency of the method
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Fig 1. Comparisen of ghebal estimates of corrclwhon dumen-

sion for two ways of chtaiming the grven final state, The initizl

space dimension 18 16, ‘The number of degices of freedom of
the Ticst channel ig & and ot of second 4,

and 1he decrcascd influence of Muctuations as the sam-
ple siae grows.

Possible ways of utilisation of the method will be
dizeussed in the conglusion, while here we shall mention
a relaticn of the ohtained characteristic o the number
of degrees of ireedom 47 in the final stawe By the
well-known [ormula [24] A= 3m =4 (m 15 the namber
uof particles in the final srate), for the nonresonance
production {13 4= 8, For reaction (2], whare there are
twe additionu]l conservalion equations for each sec-
ondary veriex, 47— 4.

tM course, the possibilily lo necognize the ©pure
states” is of interest, but at large multiplicities the final
stage is a mixture of vanous modss, and il s necessary
1o extraet from e backgroond the events correspond-
ing to nontrivial dynamical mechanisms. We may us-
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Fig. 3. Determination of dirsension for different oumbers of
eventy of multiple production.

sume that in such 2 mixtore the local inhonogeneities
and clusters of dilferent dimensions can he nhserved
thal haracterize the production mechanism. Therelore,
the next step in onr studics was the determination of
Iecal dimension in a misture of two * pure ctates™. Fig.
4 shovws that 1he presence of a resemanse whese fraction
decreased down to 20% iz clearly seen as an excess in
the lecal dimension bistogram (the dimensions were
calculated al sach point of the studied sampled

The iterative procedurs for local dimension de-
termination began with the value of =13, then we
chose § median valuss of density (ordered slatistics
from L0 to 14), and determiped the dimension by the
relevant values of [ K} and |/, ). where bruckets
indicate that the & values are laken correspondimg 1o
the ordered sequence of the density estimates, Then,
with the calculated value of the dimension we again
determuned the density seguence. corresponding 1o dif-

[ |"VH'¥ m:f. i L ) 'ﬁ;,‘rI

i

Fip 4. Local dimension diswiburon for diftersnl propartions
af typo (1) and {2} events,
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ferent & vuluws, hose the median values and relevant
[#),)] values, and so on, until the change the
dimension estimmstes wus less than 501,

T this way we determined the dimensiom for each
event of the sample.

The program uses fast-soriing n]:E,i:u'ilhms- [25], thers-
fare the nme spent in ohiaining the dimension distribu-
ton 15 el oo long.

5. Conclusion

We demonstrated  that the propesed mathod of
analvsing kincmatie informaton allows ong 1o recognize
“pure stales”  samples consisting of o complete back-
around or resonance productnon. Besides, the docal di-
mension dizribwiion allows one 1o exoract the P reso-
numece” events. Thus, weé can also judze aboot the
nranching rang of the reaction studied, The method can
be revormmendad Tor prelioiinany analysis of kinematic
information. Further, combtining i wath clusier analysis
[26,27] and effcctive muss gnalysis, one can dederming
also the existence of the resonunces themselves, and also
their widihs and masses. Fhe algonthms for dimension
usnalysiy ure rather simple and fast and offer an appor-
tumity o vispalize multdimensional informatinm.
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