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Abstract:

Modem arrays of particle detectors covering a large area are measuring
different parameters of numerous secondary products of the primary
cosmic ray interactions with the atmosphere. Only a simultaneous
measurement of a large number of independent parameters in each
individual Extensive Air hower (EAS) can yield reliable information to
reconstruct the Primary Cosmic Radiation (PCR) particle mass and its
energy as well as the characteristics of strong interaction with
atmosphere nuclei.

To make the conclusions about the investigated physical phenomenon
reliable and significant, it is necessary to develop a unified framework
of statistical inference, based on nonparametric modzls, in which
various nonparametric methods (Bayesian decisions, Neural Networks
models, Feature extraction, ete, . . .) would be incorporated.

In the paper our approach for coherent solution of data analysis
problems encountered in Astroparticle Physics experiments is
presented.

Introduction :

Currently there is no universally accepted theory of the predictive learning. Statistical
learning theory, developed by V.Vapnik [1], based on theoretical analysis Empirical
Risk Minimization (ERM) is a theory for nonparametric dependency estimation with
finite data. The Vapnik-Cervonenkis (VC) theory drives necessary and sufficient
conditions for consistency of generalization from finite set of examples. The
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generalization ability of a leaming algorithm depends both on the possibility to find
the particular function describing the examples on on the measure of the complexity
of the used family of approximated functions. Classical notions of complexity
{number of free parameters or degrees of freedom) fail to account for applications to
the functional families with infinite number of members like Neural Networks
models. The VC theory, introducing the so-called VC dimension (capacity)asa
measure of complexity, can deal and specify functional families ever with infinite
number of members. Therefore the VC theory provides conceptual framewaork for the
setting bounds for model complexity control. The issue of the model complexity
control is of crucial importance for the practical application of learning algorithms.
Of course, there is still much work needed to bridge the gap between theory and
practical applications. However, such empirical approaches for selecting the optimal
Network solution to aveid overfitting problem, as prediction risk estimation [3] and
median networks committee [4] could be addressed in rigorously defined
mathematical scope.

In the cosmic ray physics the main technique of physical analysis is the Monte Carlo
Statistical Inference (MCSI), the detailed simulation of the CR traversal through the
atmosphere and the experimental installation with a following comparison of the
multivariate simulation and experimental data. Actually, an algorithm is constructed,
which describes EAS development and registration of its different components on the
observation level, which is based on a certain family of models of the physical
processes investigated.

MCSI is a process (see picture 2.5). It takes requirements specification (basic
physics, experimental techniques, data analysis techniques), it generates families of
models to meet this specifications and it synthesizes a priori knowledge and
experimenial results to create new knowledge.

Complexity of the MCSI is determined by its multifunctionality, adaptability and
flexibility - attributes that one best realized in Neural Network models,

Mewral models captures the statistics of processes directly from data vectors -
collection of "pseudoexperimental” wariables, corresponding to all significant
variations of the model input parameters.

Here in lies MCS1 exibility. It allows the input vectors to be formed directly from
initial measurements or from reconstructed EAS parameters.

Meural methods are universal and can deal with very big input vectors. A common
complaint about nonparametric techniques is the dependence of the results on the
purity and finiteness of training sets (small training samples effects). However, due
to the inherent robust characteristics of MNeural Network (generalization ability),
results from neural analyses are relatively insensitive to modest impurities in the
training sets.

MCSI incorporates and wuses such advanced nonparametric methods as fuzzy
Analysis, Nonparametric Boundary Analysis, Adaptive Multivariate Density
Estimation, Fractal Dimensionality Amnalysis, etc, ... For net training the
Evolutionary Algorithms are used, Stopping Rules, based on the Prediction Error
estimation and Committee method provide high level of generalization, avoiding
overstraining errors. For the training of very big networks hardware accelerators
(neurichips) are used.
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Statistical Learning Theory:

The overall scheme of learning from examples can be defined as following [2]:

1. Random event generator, drawn independently from a fixed but unknown
distribution mixture;

2. A supervisor (absolute decision rule) that returns an output vector for every
input vector, according to a unknown, but also fixed conditional distribution
function;

3. A learning machine (algorithm) capable to implement a number (may be
infinite) of different approximated functions.

The problem of learning is that of choosing the appropriate set of functions, and then
particular member of this family, which predicts the supervisor's response in the best
way (optimal decision rule). The selection is based on the training set (sample), of
independent and identically distributed observations presented to the supervisor.
Usually, for experimental physics data analysis, the Likelihood Function cannot be
written explicitly, and we deal with implicit, nonparametric models, for which no
parametric form of underlying distribution is known, or can be assumed [14].
Monparametric methods use much less stringent assumptions about population than
those made in parametric statistics. Usually the underlying population distribution is
assumed to be continuous only. Of course this assumption is rather mild comparing
with the very specific assumptions made in parametric case.

Let us consider the stochastic mechanism (4, p) which generates the observation v in
a multivariate feature space —v,v is a d-dimensional vector of EAS parameters
measured experimentally. We assume that observations are randomized and can be
described by some conditional probability density function depending on the primary
particle type. The feature space v covers possible acceptable values of EAS
parameters including cuts on shower age and size, etc. The basic state space
A consists of different primary nucleus. The appropriate statistical model describing
EAS initiated by various primaries is the probability mixture model:

p0)=3 P plorA,) . M

A=)
The proportions (frequencies) of the probability mixture F, of events in each

category, 4, . determine the mass composition of the primary flux. Unfortunately,

we don't know the full statistical description {conditional probability density
functions (.- 4, )of how nature produces EAS from incident primaries, that is why,

to determine the mutual probability measure on the direct product of 4 and v spaces
the total Monte-Carlo simulation of the EAS development in the atmosphere and in
detectors is performed, including experimental data registration and reconstruction of
EAS parameters for different primaries and alternative strong interaction models in a
wide energy range. The problem is how to introduce the probability measure in the

primary particle parameters space T (K-dimensional metric space). Usually
following parameters are used as input for Monte-Carlo simulation program:

=  Primary type;

s  Primary energy;



70 ; Ashot Chilingaryan

¢ Angles of incident; Strong interaction model (one of the CORSIKA
alternatives [15]).
Of course, we've to implement the physical restriction and define the bounded

subspace of T , from which we randomly take the mesh points (¢, i=1,M ), M is

number of simulation trials. The primary particle classes will be restricted by 5
groups, including all primaries from proton to iron. The set of corresponding
dimensional (u, Tf=|,m)mturs obtained in simulations is an analog of the

experimentally measured values of (v, ,i=1,M, ), where M__, is number of

detected events. But, as opposed to experimental data, it is exactly known which
primary particle was used in simulations. These, /abeled events include a priori
information about dynamics of the EAS development and registration with inherent
uctuations. All statistical variability of events belonging to the definite class is
expressed in a nonparametric form, in form of simulation trials. The sequence
'[Hr.{. hi=l,M; j =1, L,t-is the class index, is generated by CORSIKA simulation

program [15] and consists of L classes each contaning A, Simulation trials.This

“controlled” stochastic mechanism we denote by (4, ) and will refer to it as training
sample (TS). The training, sample is the basis of all statistical procedures in applied
Bayesian and neural approaches. Usually we denote a TS by A k or explicitly by the

primary group - P, O, . . . Fe.
The corresponding distribution mixture model takes the form:

50)= Y Bplv! 4,) @
kal

Of course this substitution of unknown conditional density function p(y/ 4,) bY
"simulation” analog ,(y 4), estimated by means of training sample {u,,1,}, is only
valid if used model is adequate. And validation of the model remain the most crucial
and yet unsolved problem for EAS data analysis. For reliable estimation of
conditional densities we'll need significant amount of training trials to cover all
intrinsic  variations of measurable EAS parameters and completely represent all
categories (primary nucleus). Since both physical processes of particle production
and those of registration are stochastic, only by careful measurement of probabilities
we can gain an understanding of the EAS phenomena. We can't expect simple
solutions, as multidimensional distributions of EAS parameters overlap significantly
and any decision on primary particle type and it's energy will contain uncertainty.
The only thing we can require when classifying a distribution mixture is to minimize
the losses due to incorrect classification to some degree and to ensure use of a priori
information completely. Such a procedure is the Bayes decision rule with
nonparametric estimation of the multivariate probability density function

Bayesian Decision Rules :

The Nonparametric Bayesian decision rule have a form [16]




Meural Networks ... 71

A=nlv, 4,5)=argmax, {C,p(A4 /1v)li=1,... L. {3)
where C are the losses connected with A decision, (.4, ,v)is the nonparametric
estimate of the a posterfori density, connected with conditional ones by the Bays

theorem:
ﬁ(,,,,r.,):a_p;.%), )
¥

Finally, substituting the a posteriori densities by the conditional ones we get the
Bayesian decision rule in the form

A = argmax, {C B plv/ 4 )i =1,... L. (5
Provision is made to avoid statistical decision if all classes are very far from
experimental events (outliers problem). If

p(viA4,)<ST for all i=1,. K, (6)
then the “outliers message” is send to output stream. ST is, so called, Strangeness
Criteria, usually set to a small number,
The Nonparametric Likelihood Ratio for classes A 1; A 2 and experimental event v
can be represented as:

plw /
LR(v)= : (7
¢) Blvi4,)
The nonparametric Log-likelihood function for & - th class takes the form:
£o=Ynplv,/4) k=1L, (8)
fal

where M is number of experimental events. The negative of Log Likelihood function
is also calculated; the smaller values will correspond to most prebable model.

Nonparametric Probability Density Estimators :

To estimate conditional densities, we use Parzen kernel [17, 18] and K Mearest
Neighbors (KNN) methods [19, 20] with automatic adaptation of the method
parameter (kernel width - for Parzen estimate, and number of neighbors - for KNN
estimate)[21]. Several probability density estimates corresponding to different values
of parameters are calculated imultaneously. Then the obtain sequence is ordered and
the median of this sequence is chosen as final estimate. Depending on the intrinsic
probability density in the vicinity of point v, where the density is estimated, due to
stabilizing properties of the median, each time the best estimate will be chosen [22].
The Parzen kernel probability density is estimated by:
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i - e i E M,
Splvi 4,)= [:Ej‘!lzh‘ Z-Jle" H @, i=l.L, EImJ =1 ®)
i o

where d is the feature space dimensionality, M, is the number of events in the
i—thTS, r;is the distance from exprimental event V to the | —thevent of the TS
in the Mahalanobis metric

rj:(w—:.rjrz;l[v—uj], (10)

where b is the sampling covariance matrix of the class to which ubelongs,

@ are the event weights, A is the kernel width (parameter controlling the degree of

the "smoothness” of an estimate). The K nearest neighbors estimate takes the form:
s k-1 11
14)= ——. (11)
A= 6

4

where ¥, (v)volume of a d-dimensional hypersphere containing the k nearest
neighbors to the experimental event v,
411

Wi, &
AUE V.E, | S “Tan)’ (12)

where r,is the distance to the k- thnearest neighbor of v, T()is the gamma
function. |zr |is the determinant of the covariance matrix of the class to which the

k — th neighbor belongs.

Bayes Error Estimation:

The classification methods, like all the statistical ones, include a procedure quality
test as a necessary element. The most natural measure for quality test is the error
probability which depends on both the degree of overlapping of alternative
multivariate distributions and the decision rule being used:

R*=E{8[n(v,4,p}= [vp)av, (13)

where
0 , for correct classification, (14)

E[r"“‘d"ﬂ}k{l otherwise

The mathematical expectation is taken over the whole d-dimentional feature space V.
In other words the Bayes error is a measure of the overlapping of alternative
distributions in the feature space F, e.g. the expected proportion of the “incorrect”
classification. Since we do not know to which class experimental vectors belong, we
obtain an estimate of R B via the TS:

. -

il =S ote a7, 09
M = =)

i.e. we classify the {n‘},i =1,M,, and check the correcmess of the lassi_cation

over the index of the class ¢ ,j=1,L The expectation is taken over all ossible
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samples of volum:Mm. However, as numerous investigations have shown

(e.g.,[23]), this estimate is systematically biased and hence, a one-leave-out-for-a-
time estimate is preferable:

= MLE”e{q{u, Ado) (16)

7% 1=l
where (Ajm) is a TS with a removed i-th element, which is classified and then

"returned” to the sample. This estimate is unbiased and has an ssentially smaller m.s.
deviation compared with other estimators[24]. The advantage of R°is especially
notable when the feature space has a high dimensionality. Note, that we have the
possibility to estimate the error probability of various types by classifying various TS
classes ~f{u,0,}j=1,LBy R {or simply R, ) we denote the probability of
classifying the j-¢h class events as belonging to the j -t class (misclassification).
By R, the “true” classification robability will be denoted. For EAS classification
according to 5 primary groups, each

element of the "classification matrix" have to be determined, using the Bayes risk

estimate (16).

(R,>p R,>a R,>0 R, ->si R, fe)
R,>p R,»a R,-0 R —si R —>fe
Ry—=p Ry—2a R,-=20 R—-si R-fe
R,»p R,»a R,—20 R, —si R, > fe

\Re>p R,—>a R, >0 R.—>si R, fe
This matrix presents accumulate a priori knowledge on the possibility of data

classification into 5 categories. The overall index reecting the goodness” of features
used is following index of separability

106 [f[ ﬁ,]m- an

This averaged product of diagonal elements represents the "mean" robability of true
classification into L categories. The separability index, of course, is directly
connected with Bayes error.

Feed-Forward Neural Networks:

Feed-Forward Neural Networks (FFNN) represent very simple structures composed
of processing elements (nodes) and connections (weights). FFNN belongs to the
general class of non-parametric methods that do not require any assumption about the
parametric form of the statistical model they use. The central issue of FFNN is
implementation of the bounded mapping [25]:

f:UcCR"»R", (18)
from a bounded subset ¥ of nl dimensional Euclidean space to a bounded subspace
flV] of n2 dimensional Eucledian space (usually n1>n2 ). The special case of such
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mapping when nl=1, constitutes the classification problem. Of course, for real live
problems it is impossible to define non- overlapping devision of V corresponding to
different categories, but using the examples of mapping action, a Network
configuration can be urned to minimize the misclassification errors nesr to minimal
achievable Bayes error (13).

The net architecture considts of L layers each having K nodes. The first layer consists
of N1 elements that simply accept the components of input vector v and distribute
them, without medification, to the all of the nodes of the secound layer. The nodes of
the secound layer calculate a weighted sum of all inputes and then transform it to the
third layer, and so on till the output layer with N2 nodes is reached. The output of a
FFNN different classes of TS from each other as much as possible.

Therefore the “goal” output O™ (k) for events of the k- thcategory could be

chosen as follows:

or <AL paik (19

where K is total number of classes. For the multi-way classification one can define a
set of non overlapping bounded intervals in (0-1) for each category. This sequence of
bounded non-overlapping sets O, .k =1,K,along with the chosen “goal” values

(located within corresponding subsets), will determine the mapping into the K class
labels:

O(u)c O, —»u belongs to k, category. (20)
The objective (error) function to be minimized is simply the discrepancy of apparent
and target outputs over all training samples (so called classification score).

K M, K

0=y % 0,(0/-0FV,Y a,=1. (21)

ial jal k=l

where O,f is the actual output value for the j- rhtraining event, belonging to the
k—thclass and the ﬂfw is the target value for the k - th class output, where K is

number of categories and M, is the number of examples for the k — th class.

The @, weight cofficients controls the “contribution” of each particular class of TS

to the overall error function. For the identification of the primary type by EAS
observable, usually intermediate nucleus (oxygen class) with masses between the
lightest (proton class) and heaviest with significant abundance (iron class) are trained
worse compared with edge classes.There are two possibilities of checking the
classification accuracy of middle categories. First of all we can enlarge the category

gcceptance  region Omm, (a posteriori solution)(20). And, second, the
corresponding weight value in error function could be enhanced before starting net

training (a priory solution) (21).
Net Training:

The only information to “train” network for “nonliner” mapping is contained in a
priory given paires —(#.,u,),i =1, M, where M is the number of training events.
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During the minimization procedure the calculated differences becween the actual
network output and the desired output are used to adjust the weights.

The back-propagation (BP) algorithm of neural network training is one of the most
important historical developments in newrocomputing. The simple rule (based on
gradient descent) of wieghts updating after proccesing of one or more training
examples in principle will lead to arbitary small mean square error of function
approximation. The family of BP algoritms is realized in numerous packages, with
the Jetnet package being most popular in HEP community[26].

Generic Algorithms (GA) and Evolutionary Programming (EP) are boath search
technigues based on an simulation of the evolutionary processes. The challenge is to
find “good solutions” (chromosomes) in very large search spaces. GA employ the
successive reproduction among an assembly (pool) of fittest parents using generic
operations such as crossover, inversion, mutation and selection with predefined rules
for constructing of next generation. Different m:n scenarios (m — number of parents,
n — number of offsprings) can be realized. The current best chromosome (parent)
undergoes the zero mean phenotypic mutation (realized by the random search
algoritm with return at an unsuccessfiul step). This kind of net training has been
proved to be much more effective than simple random search algoritms.The
MULLTI and SINGLE modes are designed for random search correspondingly in all
net parameter space and — to make random change of also randomly chosen net
parameter, Different net training scenarios combine different search modes with
various search parameters.

For fast scanning of the net weights space a deterministic algoritm is implemented.
The error function is calculated in each point of the multidimensional quasi-random
sieve[27] uniformly filling the N-dimentional cube. Positioning the sieve center at
the previously found best point, and subsequently decreasing sieve size, we’ll arrive
to the best net.Very essential question of scale invariance can be addressed by
changing value of step in described above SOBOL mode.
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Quantification of a priori knowledge

Monte Carlo Statistical Inference

Ashot Chilinearvan

Measurements
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