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Abstract:

The most common drawback in Feed-Forward Neural Networks
(FFNN) performance is the limited number of training and test samples.
Usually, in many NN applications we can't simulate enough simulation
trials, therefore, we never can be sure that we use sufficient number of
examples to learn a general problem and not the specific training data
set. As we are not sure that training samples used reflect all variability
of the considered phenomenon, learning of specific selected examples
too well is not desirable. What we need is to generalize from the used
training set to entire problem. Therefore, the strategy, checking the
expected performance of FFNN during training is of crucial importance.
The strategy connected with the Prediction Risk estimation, that reuse
data and gives unbiased estimate ever for small sample sets, is
generalization of one-leave-out-for-the-time estimate. Estimates of the
prediction risk offer a sound basis for assessing the generalization
performance of the model and can be used as a tool for architecture
selection and constructing of the stopping rule. Therefore, it is important
to check the training results not with the "training error", but with the
"generalization error”, represented by the prediction risk. In present
paper the over-training effects are investigated and the possibility of
selecting the most appropriate NN architecture for a problem solution
using the Final Prediction Risk (FPE) estimate is demonstrated.




122 Ahot Chilingaryan

Introduction:

The classification mode of the neural mapping and the recovering of the unknown
functional dependence are the main realizations of neural mapping possibilities
implemented by FFNN. We will consider the classification problem bellow. A
primary advantage of mapping networks over classical statistical analysis methods is
that the FFNN have more general (algorithmic) functional forms than classical
statistical methods can effectively deal with [5]. The FFNN are free from depending
on linear superposition or orthogonal functions and can mimic sophisticated
stochastic mechanism whereby the Nature generate the data. Therefore, in contrast
with classical classification problem, we've to specify not the particular member of
known analytic family of functions, rather the non-parametric algorithm
(classificator), which generalizes the unknown mapping rule, implementing learning
strategy on the training sample. The classification learning strategy will be based on
the fundamental notion of the generalization. As we are not sure that training samples
used reflect all variability of the considered phenomenon, leaming of specific
selected examples too well will effect the so called over-training, when the NN
performance on training sample is much better than on the independent (test) sample.
What we need is to generalize from the used training set to entire problem. Therefore,
the strategy checking the expected performance of FFNN during training is of crucial
importance. The strategy, proposed in [5] is connected with the Prediction Risk as a
performance measure. In general, the particular FFNN model can be specified

(indexed) by the A parameter:
AcA=(V,GW), (1)
o Where ¥ —vnotes a chosen subset of variables from the set of all possible
variables V' ;
s G is a selected architecture from the class of possible architectures ¢ ;

» and W is the set of net parameters (weights),

The prediction risk p(y) is defined as expected net performance on a finite test set:
M
Pa)= B 20 0,060, @
where the u is the vector of input parameters, ¢ is the corresponding true output and

&;,u;}wm not used in training O, - is the trained network output. The strategy

consists in the selection of the particular Afrom the model space A, which
minimizes an estimate of the prediction risk.

The procedure of the prediction risk estimation, that reuse data and gives unbiased
estimate even for small sample sets, is connected with the generalization of one-
Jeave-out-for-the-time estimate. The k-fold cross-validation, introduced by Geisser
[2] and Wahba [4], instead of leaving only one event, delete larger subsets from
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training sample. Let the training sample p E[IJ,:;;.), j=1,M)be divided into K
randomly selected disjoint subsets of the equal sizes M, = M /k, denoted by 7 .
And the P with denote the training sample with deleted i-th sub sample P Then the
cross-validation mean error (MSE) for the selected subset P, is defined as:

MSE, (W)=~ Tl -0, 3
k(. ch
and
MSE(A)= %i MSE; (A) (4)

J=l
Typical choices of K are 5 and 10 depending on the training sample size. An useful
modification of cross-validation mean square error, penalizing complicated networks
comprising many hidden units, is the Akaike’s final prediction error (FPE) [3). For
large enough training sets it takes the following form:

P(2)= MSE{A{I i z”TTm"] )

where NTOT is the total number of networks weights. Just this expression is
recommended by authors of [3] as an estimate of prediction risk. Estimates of the
prediction risk is directly connected with generalization performance of the model
A and can be used as a tool for architecture selection when the V (the training pattern
set) is fixed. It is important to check the training results not with the “training error”,
but with the “generation error”, represented by the prediction risk for constructing the
stopping rule.

The cross- validation procedure and estimation of the
EPE:

Described above technique with appropriate defined error function was used for the
different NN training for the 3-way classification problem and the FPE estimation of
these networks for different sample sizes. The simulated toy-problem was to classify
the events from two dimensional Gaussian population with means 1,2 and 3 for the
first second and third classes respectively:

15,7 e ©

where ¥, is the input vector, ¥ =[x,,x,]; j =1..50000,0 =1 for all three classes.

Six sample with different sizes were used to train the NN to generalize the 3-way
classification of random events from Gaussian populations. Particularly, samples
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containing 100, 200, 500, 1000, 2000, and 5000 events per class were used. Five
different NN architectures were constructed using 2 input nodes and one output node
for all configurations, and the number of hidden nodes varying from 2 to 10 nodes.
The FPE of NN with different architectures were estimated for these sample sizes and
compared with the training error.

M of itermlbony

Figurel: The training process of the NN with architecture 2:2:1,
TS consists of 300 events (30 validation events, 10-fold cross-validation)

For large enough training sets the usage of the one-leave-out cross-validation can be
very much time consuming procedure, therefore we have used a 10-fold cross-
validation for each sample size. Particularly, we remove 10% of the training events
form TS and use them as a validation sample (VS).

After the training process is finished (the maximum number of iterations is reached
or some stopping criteria is applied), the removed 10% of events are taken for the
validation purposes. So, each sample is reused for the training process 10 times until
all separate 10% of the sample are subsequently removed and used as a validation
sample. Note, that in each stage of the cross-validation the VS events are disjoint.
The MSE in each stage is calculated by the formula 4, and the expected MSE for the
given sample is calculated by formula 5 for both training and validation samples.
Then the formula?? Is used to calculate the PR of NN on validation sample, this is
used as the Final Prediction Error.
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Figure2: The training process of the NN with architecture 2:6:1, TS consists of 600
(above part) and 1500 (bellow part) events (60(150)-validation events)

Figures 5 and 6 display the training process development for different sample sizes.
From Figure | one can see that when the TS size is very small the over-training
occurs even with the smallest NN architecture (the training error is decreasing during
further training, while the error on independent validation sample is reached to some
local minima and then is increasing).

That means having very small TS one could not expect to obtain a generalized NN,
because the net weights are easily tuned to classify rather well the small number of
training patterns only. Therefor, in such cases, the NN should not be trained with
many training epochs (presenting the training patterns to the NN many times). But for
the question, when to stop the training process, the common (general) answer has not

found yet, which could be applied for any model ;",being independent of the
problem to be solved, sample size and NN architecture. As it is Easy to see from
upper and lower boxes of the Figure 2, using the same sample and the same NN
architecture, in different stages of the cross-validation procedure the over-training has
occurred in completely different ways in terms of number of training iterations and
MSE on training and validation samples.

one possibility is to stop the training when the validation error starts increasing (or
this increase is larger than some threshold value), but this criteria is not desirable due
to the random character of the over-training effect. As it is demonstrated on the
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Figure 2, the random increase of the validation error is occurred rather often. The
curve of the validation error has many local minima, but during further training the
MSE is decreasing and the best point in multidimensional space of the NN weights is
obtained at the end of training process.
The acceptable technique for this purpose is not to stop the learning process at all, but
to apply the following procedure:
e After each successful iteration of the learning process the net error (MSE) is
calculated for the test sample
e If the test error value is less than the value in previous step the NN weights
obtained at the current training step are stored
Else, the NN weights obtained at the previous step are kept
e At the end of the training process the weights which give a best results
(minimal MSE) on the test sample are found and used a final best weights for
NN.

Discussion of the Results:

In previous section the procedure of the NN FPE estimation was described. This
procedure gives an estimate of the FPE of the NN on some TS, but does not give any
information about the error bounds of the estimated FPE. It is important to obtain not
only unbiased estimate of the FPE but to estimate the errors of this estimation as well.
With aim of this we have applied the cross-validation procedure for each of the 6
different samples 10 times, of course using 10 different (from the same general
population, but completely disjoint) samples for each size. So, having 10 different
estimates of the FPE for each network architecture we calculate the mean and the
standard deviation of FPE by the following formulas:

E(FPE(1))= # i. FPE,(4) -

N
o(FPE(A)) = J_.L— S {FPE, (1)~ E(FPE(A)f
.|illr - I =l (E}
where N is the number of cross-validation procedure for the given sample size and
NN architecture, and i=1, N.
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Figure 3: The dependence of the FPE and training errors on the number of hidden nodes
in NN for different sample sizes
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Figure 4: The dependence of the FPE and training errors on the number of hidden nodes
in NN for different sample sizes
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Figure 4 displays the dependence of the FPE on the used NN architecture for different
sample sizes. As one can see from this figure for the smallest sample size (300
training events) the best NN configuration turns to be the net with 2 hidden nodes,
because the training error is decreasing with increase of the number of hidden nodes,
but the FPE is increasing dramatically. The remaining graphs on this figure show that
when the sample size varies from 600 to 3000 the best configuration turns to be the
net with 4 hidden nodes.

On figure?? the same dependence as on Figure?? is plotted for large sample sizes. It
is easy to see that the best architecture is again 2:4:1. It is also easy to recognize that
the FPE and training error values became closer in contrast with the Figure ??, which
means that the NN trained with the large number of training patterns achieves better
generalization. Although the best FPE is obtained using the net with 4 hidden units,
from the right graph of this figure one can see that in case of very large training
sample (15000 events) all networks (except the smallest) give very near FPE and
within the error bounds all networks have the same performance.
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