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Abstract:

The reduction of the errors committed by neural estimator has two
aspects. The first one is the minimization of training error and the
second minimization of generalization error. In present paper the
"committee of networks" approach is presented in attempt to obtain a
better generalization proceeding from a number of trained networks.
Different types of committees are described and the experimental
results are discussed,

Introduction:

It is common practice in the application of neural information technelogies 1o train
many different candidate networks and then to select the best, (on the basis of
performance on an training data set) and to use further only this network. There are
three disadvantages with such an approach. First of all, if we select the best network
among many trained all of the efforts involved in training the remaining networks are
wasted. Second, the network with best performance on training data set can be over-
trained, and third, even if the over-training effects are controlled, the generalization
error (of particular network from all available) on the test data might not be the
smallest, if the training error is smallest, due to the sampling effects.

Different networks trained on the same training data set but with different training
scenarios contain different information on the general nature of considered
phenomenon, combination of these networks can give more generalized
representation of these data, then the single "best” network.

Usually this procedure is calied a committee of networks. In simplest case, when all
networks are equally contributed, i.e. the final output is the average of all outputs of
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different networks, it is called a mean committee. Another type of optimal nonlinear
combination of networks is discussed in the next section.

The committee procedures:

There are many different possibilities to make a committee of networks. In this paper
the averaging and the median committees are presented. The first
procedure is a simple averaging of all neural networks outputs and taking this mean

as a final estimate. In ideal case, when the error of each trained network E'.{x} has
zero mean (unbiased training) and all errors of different networks are un-correlated:
e i{.1:) = True(x)— Out(x) x isatraining vector, i=1,.N,

it is shown that even the simplest averaging error: £, = E_ / Lwhere E_ isthe

committee error, £, - averaged etror of all networks and L is the total

number of different networks (Bishop C.M.). In practice, the reduction of estimation
error is much smaller because the errors are highly correlated. However, it is easy to
show that the committee process cannot produce an increase of the expected error:
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We might expect that some members of the average committee will make better
predictions than other members. We would therefore expect to be able to reduce the
error still further if we give greater weight to some committee members than to
others. But the better prediction on training sample does not mean better prediction
on control sample, so we do not know to which members to give greater weights. To
automate the optimal weighting of neural networks we use the ordered statistics
technique and call that procedure as a median committee, in analogy to the non-
parametric estimate of multivariate probability density function, introduced in [2] (A.
Chilingaryan 1989),

This procedure can be explained as follows: trained networks are implemented for
the independent (control) data set and then the output values of all different networks
are ordered in increasing (or decreasing) sequence and the middle (median) value of
this sequence is taken as an final estimate. In this case again only one network's
output is selected, but for each particular event as a median will be selected more
stable reliable network from all available networks. So, all networks are

implemented in estimation process, but each of them as many times as its output
becomes the median of variation row af all outputs (fig. 1,2).

W 1,if i = (L +1)2, (L is an odd number)
|0, otherwise 1)
If L is an even number, two middle outputs are taken with equal weights. The median
committee iooks somehow like weighted mean committee, because each network has
a different contribution to the generalized final output. The problem how to give the
weights to networks is avoided, because the predictions are weighted according to the
ordered statistics.
In this case the weight of each network is defined in ordering procedure, using its
output on control sample, which seems to be quite natural way to determine the
weights. And the expectation of error reduction can be viewed as arising from
reduced variance of network outputs for each individual event due to the removing
large and small outputs (placed in the beginning and end of the variation row). Thus,
the main attention in results discussing will be paid to the median committee
procedure.

Resolving of the mixture of analytic models:

For the demonstration of the advantage of committee estimator comparing with the
single best network the combined regression function is used, which consist of three
different analytic models. The regression function in each model is a certain
distribution of means of the five dimensional Gaussian populations (eq. 2).
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where X is the input vector, X = [x, 1 X33 X3, X, ,x,_].
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In first model M ;s distributed in 0-5 interval according to exponential low, in

second and third models the it is distributed by Gaussian and power lows respectively
(eq. 3.4.5).

M, (1) = 1{;_1,1—2—1&;‘ DM [ - ]] 3)
M,(2)=N(g,0), 4)

1
M ,(3)= RN DM ja (b2-b1)+b1; (5)

Where @ = 2,02 =5,01=0,u=25,0 =1,j=1,10000
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Figure 3: Distribution of regression function and input parameters
(mixture of models)

So, we have three different training data sets, each of them represents the general
data set only partly. This is a common case, when we are forced to use a Monte-
Carlo simulation of some complicated phenomenon, when no a priory information
can be assumed to describe exactly the underlying multidimensional probability
distributions. Three different networks trained by these three models are applied to
estimate the true regression function of the models mixture and the results are
compared with the committee results.

The model to be considered is the mixture of these three models (control data set), in
0-1.7 — exponential distribution 1.7-3.3 — Gaussian distribution and 3.3-5 - power
distribution (eq.6), (fig. 1).
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ln(_LH—RN DM (e -—e'”)} Lif 0<M,
€
M, ={N(u,0);if 1.7<M,;<33

1
RNDM (b2 -b1)+bl;if 33<M,<5

g (6)
On the figure 2 the estimation results by three different networks are plotted. It is
easy to see that even for the best network there is significant bias of the estimation
error. Comparing these results with ones in figure 3, where the estimation errors for
different networks and committee are plotted, one can see, that the committee
procedure leads to removing of the bias of estimation error and reduction of its
variance. From table 1 one can see that the reduction of estimation error is about 10%
and the median estimator gives better result than mean estimator.

- - e o= e oW

Figure 4: The regression function Figure 5: Mean and median
estimation by different networks committee results

trained on different models:

1 - exponential, 2 - Gaussian,

3 - power.

Table 1: Root mean square errors of 3 different model
networks and committee

Netl Net2 Net3 Median  Mean
RMSD | 04536 04584  0.5688 04168  0.4455
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Estimation of energy of primary cosmic ray flux
Particle :

Such a selection of training and control data samples in toy problem is caused by a
big importance of implementation of committee procedure for the Cosmic Ray
Physics data analysis, where one has to solve an inverse problem and Monte Carlo
simulation of propagation of cosmic ray radiation through the atmosphere and
experimental installations is used. This is the simulation of development of extensive
air showers (EAS) (Chilingaryan et al. 1997, Roth et al. 1997) in atmosphere induced
by different primary nucleus. The problem to be solved can be presented as follows:

Simulation data Experimeental data
E<AN,.N,.SN,.}) = 2,%N,N,S.N,,..)
where the E and A are the primary energy and nuclei type inducing the extensive air
shower in the atmosphere, N, -number of electrons, N , -number of muons, ... are

the secondary products (EAS components) of the cosmic radiation and atmosphere
nucleus strong interactions. In the left side of above formula we prede_ne E and A
and using Monte-Carlo method calculate the set of EAS characteristics, in the right
side we have an experimentally measured EAS characteristics, but the primary type
and energy are unknown. The problem is using the simulated data to reconstruct the
primary nuclei energy and its type.

Our simulations are not exact representation of the real phenomena due to the many
uncertainties and assumptions on the strong interaction parameters at energies non
achievable for man-made accelerators.

The commitiee procedures were applied for the primary energy estimation of EAS
simulated data, as we use ‘\neural regression” for this problem (Chilingaryan A , H.
Rebel 1997) In fig. 5 one can see the results of the primary energy estimation by
different single networks and the committee of these networks. From this figure and
table 2 it is easy to see, that the improvement of estimation error is significant, it is
more than 10% comparing with the best single network among five used, and again
median estimate is better than the mean.

Table 2: Root mean square errors and relative errors of § different
networks and committes

Netl Net2  Netd Netd  NetS Median __ Mean
RMSD | 03802 04882  [1378 05423 05999 | 03421 03586
Rel Err. | 00213 00262  0.0835 _ 0.0286 00345 | 0.0197 _ 0.0200
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Figure 6: Estimation by different networks and their committee

Conclusions:

Using the committee of networks approach and the simulated data we demonstrate,
that the reduction of estimation error is generally obtained even in case of small
number of committee members. The improvement by about 10% can be viewed as a
significant improvement, since the correlation between errors of different networks is
rather high. If there are several trained networks to find the best one for a problem
solution, it is always sensible to make a committee of that networks.
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