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Abstract

We introduce a new ncural classification technique for background rejection in high energy physics and astrophysics
experiments, which permits us to (i) directly optimize the desired quantity, i.e. the significance of signal detection (signal fo
noise ratiok; (i} obtain the complicated nonlinear houndaries for signal event acceptance. Examples of implementing the
proposed technigoe for backgronnd rejection in high energy astrophysics experiments are presented.

L. Introduction

In high energy physics and astrophysics experi-
ments the most important task is to separate experi-
™ mental data into two classes, ie. the signal (new
interesting physical phenomenon) and background
(non-interesting, abundant events). Typically in a
physical experiment a particular event is described as
a point in an AN-dimensional measurement metric
space and a mixture probability density function can
be defined.

In a previous paper we considered the problem of
distribution mixfure classification in the casc of the
nonparametric type of a priod information (the statis-
tic model is given in the form of a stochastic mecha-
nism, whereby the data are penerated and the under-
lving log-likelihood function cannot be given explic-
itly) (Chilingarian and Zazyan, 1990). A method of
the distribution mixture coefficient estimation was
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proposed, based on the Bayesian decision rules and
bootstrap replicas. The nonparametric probability
density estimates used in Bayesian decision tules
were obtained with the help of sets of **psendoex-
perimental” events obtained in Monte Carlo simula-
tions (training samples).

The normal approach to high energy physics data
analysis is to perform precise simulations of particle
collisions, determine the detector’s response to the
passage of the produced particles and to simulate the
secondary interactions and showers (Flugge, 1991},
But, if one is scarching for new, yet unseen phenom-
ena, the simulation can be misleading, and omnly
experimental information can prove the existence of
“new physics’”, Considering that the rale of interest=
ing events expected in colliders of the next genera-
tion and astrophysics experiments is negligible as
compared to noninteresting (background} events, we
can state that the reduction of the data volumes in
such a way, that the maximum sensitivity to the new
physics is preserved and the maximum immunity to
noise is achieved, is the key to the suwccessful analy-
sis (Mapelli, 1991),
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Such “euts” {mostly linear) performed on multi-
dimensional distributions of measurements are usu-
ally used in collider experiments analysis to enlarge
the significance of statistical conclusions concerning
the existence of mew phenomena. First of all it is
necessary to prove with high significance level the
existence of any signal, ie. that in the mixture
distribution:

P{ I‘} - Pﬁgjalfx} + (I —C!'} 'Pblukgmund{ -T) {1}

{(where usually e < D01 and Psi‘nl{x} is unknown),
e is not equal to 0. Then the value of the parameter
@ has to be estimated.

The fundamental theory of particle physics called
the Standard Model predicts almost all of the proper-
ties of elementary particles except their masses (so
we cannot obtain probability distributions of pure
signal events). Determination of the masses of the
top guark and the neutrino is currently the highest
priority in high energy physics. Afier an accelerator
run during 1992-1993 the DO collaboration at Fer-
milab {USA) collected a data file consisting of 13
million events and one cannot expect more than a
few dozen evenis to be the result of top quark
production (D0 Collaboration, 1994),

It is difficult to outline the desired *‘best™ signal
domain where it is possible to detect the significant
abundance of signal events over the background
distribution — signal detzction problem. The signal
domain — multidimensional decision surface — can
be nonlinear and its selection without knowing the
signal and background distribution shapes is an un-
solved problem yet,

We propose to use Neural Networks (NN) for the
a posteriori signal detection. The NN technique is
widely used in high-energy physics experiments for
classification and event reconstruction purposes
(Fogelman Soulie, 1992; Peterson and Gvaldsson,
1991; Denby, 1992). The net is usually trained on
simulation data, and the so-called *““classification
score” is used as the objective (guality) function in
minimization {best net parameters selection). It is
assumed that both background and signal samples
are available. But in the case of interest, the pure
signal samples obtained from Monte Carlo trials are
often either simplified or incorrect, so it will be
better not to use “*signal’ samples at ail. The pecu-
liarity of our approach consists in training the net

without using pure signal samples. We propose 1o
use mixed signal and background and pure back-
ground samples obtsined from the experiment for
neural net training. A new type of objective function
is introduced instead of the classification score.

In Section 2 the NN classification technigue is
presented. Section 3 describes modification to the
technique and uses as an example the detection of
very high energy <y-guanta coming from point
sources, registered by imaging Cherenkov telescopes
{Lang et al., 1991).

2. The neural classification technigue

The basic computing element in & mulilayered
feed-forward NN is a node (formal neuron). A gen-
eral ith node receives signals from all neurons of the
previous layer:

NODES(/)
IN'=T; + ;El W} x OUT/,

i=1, . ,NODES(I41), I=1,...,L—1 (2)

where the threshold T, and connection sirength ﬁj:
are parameters associated with the node i, I is the
layer index, [ is the total number of lavers,
NODES(!) is the number of neurons in the Jth layer
and OUT; is the output of the jth neuron in the /th

layer. The index j always corresponds to the higher «

layer (the highest layer is the input layer), and the
index i to the next layer. The output of the neuron is
assumed to be a simple function of this node input,
usually it is formed by the nonlinear sigmoid func-
tion:

OUT! = 1/(1+e™™)},
i=1,...,NODES(I), [=2,...,L (3

where [N! is the input of the ith nevron in the /th
laver.

With this defined input/output relationship, the
multidimensional feature set is translated from input
through hidden layers to the output nodes, where
classification is performed. So, the NN provides the
mapping of a complicated input signal to the class
assignments.

Such a data handling design, combining the linear
summation on the nodes input and nonlinear trans-
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formation in the nodes, allows us to take into ac-
count the whale distinctive information, including
differences in nonlinear correlations of allernative
classes of multidimensional features.

The *‘target” output OUT™ (L)} for events of
the kth category (we restrict ourselves o networks
with a single output node) is determined to maximize
the separation of the alternative classes from each
other:

k-1
K—-1

where K is the total number of classes. In the case
of two classes, i.e. signal and background events, the
““larget” outputs, as one can easily see, are equal to
zero and one, The actual evenis classification is
performed by comparing the obtained output value
with the “‘rarget’ one. We expect, that the data flow
passing through the trained net will be divided in
two clusters concentrated in the opposite regions of
the (0, 1} interval. Choosing an appropriate point in
this interval (the so-called decision point C*), the
classification procedure can be defined: an cvent
with an output greater than or equal to the decision
point is attributed to the background class, while all
the other events are assigned 10 the signal class:
<C",
OUT{ x) { S Ev.

QUTWR"(-"-]: , kE=1,..., K {41

xr s classified as signal,
x 18 classified as background,
(5)

where OUT(x) is the output node response for a
particular experimental measurement x. This deci-
sion rule is a Bayesian decision rule; therefore the
output signal of a properly trained feedforward neu-
ral net is an estimate of the a posterion probability
density (Ruck et al,, 1990).

The expected minimal classification error caused
by the overlap of the distributions (the Bayes error)
depends on the discriminative power of the feature
subset selected and on the learning power. By mov-
ing the decision point along the (0, 1) interval we
can change the relation between the errors of the first
and second kind (the position of the decision point is
the neuwral analog of the loss function in the Bayesian
approach),

The net training consists of determining the neu-
ron couplings using the “‘labeled™ events (training

samples). The figure of merit to be minimized is
simply the discrepancy of apparent and target out-
puts over all training samples (classificalion score):

KM "
@=L ¥ (OUT,(k) -OUT™®(k))"  (6)
k=] m=1

where OUT, (&) is the actual output value for the
mih training event, belonging to the Ath class, and
OUT <Yk} is the tatget value for the kth class
output, where K is the number of categories and M,
is the number of cvents in the kth training set.

Our goal is to change the training procedure to
avoid the usage of the “‘signal®’ sample. In the next
section we shall introduce a new type of quality
function to perform the best signal domain selection
(signal detection).

3, The new neural algorithm for background re-
jection

In high emergy astrophysics during the 198(0's,
significant progress has been made in the unambigu-
ous detection of the Crab ncbula at TeV energies by
the Whipple collaboration (Lang et al., 1991). At
TeV energies gamma rays have been shown to pos-
sess such characteristics of the Cherenkov image
shape and orientation which permit them 1o be iso-
lated from a much larger hadronic background. The
main technigue to reject this huge background con-
sisted in applying multidimensional linear cuts on
measured Cherenkov image parameters, first intro-
duced by Hillas (1985).

To search for discrete gamma-ray SOUTCes, one
looks for an abundance (N, — N) of events com-
ing from the direction of a possible source (N, ) as
compared with the control measurement, when pure
background is registered (N, ). As the expected
fluxes are very weak (the signal to background ratio
not exceeding 0.01), one should always answer the
following question: is the detected abundance a real
signal or only a background fluctuation? The mea-
sure (level) of statistical significance used in gamma-
ray astronomy is the so-called criterion size (o)
(Zhang and Ramsden, 1990);

N, — Ny

O e, (7
I'Non +No|’f
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Talle 1
Whipple Crab detection, 1988990

N N o DIFF DIFF /N,y Notr/ Ny
Raw S6255 Al1408 4.8 4347 LR
Azvadth 14422 11389 204 3233 .28 O2ET
Wedge cut * 6017 3381 172 26346 078 00067
Supercat 4452 1766 343 DA 1.52 0s
Meural 4::5::01 678 ZE5H asR 420 120 00057

* (Chilingarian and Cawley, 1991),
" (Punch et al., 1991),

The greater o, the lesser the probability that the
detected excess is due to a background fluctvation.
Development of new detector hardware and new data
handling methods aim to enlarge the value of or.
After selecting the “'gamma-like'’ events from raw
data (both from the ON and OFF samples), the
criterion takes the form:

Non = Nott
B
YN + Mopy

(8)
where N_J. N j are the numbers of events surviving
data selection cuts,

The best discrimination technique used in the
Whipple Observatory is the multidimensional cuts
(supercuts) method proposed in (Chilingarian and
Cawley, 1991) and then improved in (Punch et al.,
1991} {four Cherenkov image parameters were nsed),
The method consists of a posteriori selection of the
best gamma-cluster {multidimensional box), contain-
ing “‘gamma-like’" events. The particular coordinates
of the box were selected to maximize the & value on
the 1988—89 Crab nebula observation data base (65
ON, OFF pairs ~ 10" events) (Vacanti et al,, 1991).
By implementing the supercuts method, the initial o
value was enlarged from 5 (raw data) o 34,

For Neural Net analysis, we used the same vari-
ables as for Supercut analysis, i.e. Width, Length,
Dist, and Alpha (Width and Length specify the
angular size of the image, Dist specifies the position
of the centroid of the image relative to the source

position, and Alpha specifies the orientation of the
major axis of the image relative to the source posi-
tion). We use a simple 4::5:: 1 neural net to select a
morc realistic nonlinear shape for the gamma cluster.
The net was trained on experimental ON and OFF
events {i.e. events taken in the direction of the source
and cvents taken on a background or ‘‘control”™
region).

A new ohjective function was used: instead of the
classification score (6} the o valuc (8) was maxi-
mized. During the iterations each particular ON&
OFF event was classified according to decision rule
{5) with a prechosen (or also optimized) decision
point C* and after executing all training events a
new o value was caleulated. After several thousands
of iterations the more complicated gamma-cluster
shape was outlined and the o value was enlarged up
to 35.8 (the minimization was performed on a sub-
sample of data, containing 25% of all events, and the ~
o value extrapolated for the whole data set).

The comparison of different background supres-
sion methods is shown in Table 1, where DIFF = A
= N, is the estimate of the signal, DIFF /N 5 is the
estimate of the signal-to-noise ratio, A_; /N, is the
estimate of background supression by the technique
used.

The Neural Net classification (multidimensional
nonlinear masks method) was also applied to the
detection of the Crab Nebula by another Cherenkov
telescope located on La Palma (Kanarian, Hegra
collaboration),

Tuble 2
Hegrz Crab detection, 1992-1993 (Krennsich ot al, 1993)

N Mg a DIFF DIFF /N, Mot Nonr
Azwidth { < 0,18) 4083 3674 464 409 11 005
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Tahle 3
Hegra Crab detection, 1997, September—Octoher

N [ - DIFF DIFE /N,y Ko/
Raw (RE0 IB5T i 23 LML
Agwridih 1333 1146 iTe 187 016 0037 .
Width, Miss Q55 T84 4.1 17 022 0.025
Width, Miss,
Length Linl 442 LR 167 (.34 e
Width, Miss,
Length, Cone 638 460 537 178 .39 0ins
Meural 4::3::1 520 342 608 178 052 001

The Azwidth analysis results (Krennrich et al.,
1993) on this data set (150000 events) are presented
in Table 2.

The new methods were applied only to part of the
data (September—October 1992). In Table 3 the re-
sults of different background rejection methods as
applied to this data are summarized. As one can see,
the peural analysis achieves the highest signal-to-
noise ratio and the smallest background contamina-
tion using 4 image parameters { Width, Length, Miss,
Conc) and only 3 nodes in a single hidden layer.

4. Conclusions

There are some alternztives to the use of neural
networks for background rejection in high energy
physics experiments. There cxist also many tradi-
tional statistical methods which are more mathemati-
cally founded, for example, Baysian statistical deci-
sions {one can see examples of the use of this
approach in high energy physics data analysis in
(Chilingarian, 1989, Chilingarian and Zazyan, 1991)},

Time for training the neural net, tedious selection
of network architecture, neuron output function and
global leamning parameters plus the dependence of
results on the initial state of the network leads to the
results of which optimality and reliability have 1o be
checked with resulis obtained using traditional non-
parametric statistical methods (Duch and Dierksen,
1994).

Many important theoretical problems of neural
calculations are far from being solved. Only wvery
few quantitative results are available, There are sev-
eral practical problems to be solved:

@ Sclection of the learning rules for different prob-
lems;

® [Investigation of the influence of the accuracy of
the weights on the NN performance;

@ Investigations of the role of the shape of the
nonlinear cutput function and of the number of
nodes in the hidden layer on the sensitivity of NN
classifier;

@ Designing fast training algorithms which mini-
mize the true error (on a test sample) instcad of
minimizing the apparent error (on the training sam-
ple).

Nevertheless for solving mathematically ill-posed
multidimensional noalinear problems with ill-defined
conditions {like selection of nonlinear multivariate
signal domain), where common statistical methods
usually fail, the use of neural techniques seem to be
suitable and as one can see from the previous the
seclion, the data analysis resuits can be comparable
with or beiter than traditional techniques.
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