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A multidimensional analysis based on Bayes decision rules and nonparametric multivariate density estimation is proposed for
classification of the Cherenkov light images of air showers registered by an air Cherenkov detector (ACD) with the multichannel light
receiver. The differences in the angular size of the image, its orientation and position in the focal plane of the ACD and spectral
composition of the Cherenkov light are used in the analysis to distinguish the showers induced by primary y-rays from showers
induced by background cosmic rays (CR). It is shown that the usage of several image parameters together with their correlations can
lead to a reduction of the CR background rejection down to a few tenths of a percent while retaining about 50% of useful

(y-ray-induced) events.

1. Introduction

One of the most important problems of very high
~energy (VHE) y-ray astronomy is related to the im-
ovement of the air Cherenkov technique to effectively
reduce the background hadron contamination (see, e.g.,
ref. [1]). Recent Monte Carlo simulations [2-5] have
shown that the differences between Cherenkov light
emission from air showers initiated by y-rays and pro-
tons (and other nuclei of CR) are more pronounced
than it was supposed earlier. These differences include a
greater angular divergence of particles in the CR-ini-
tiated showers (p-showers) due to the multiple particle
production processes.

The image of the p-shower is therefore broader, and
the presence of penetrating particles in the p-shower
makes the p-image also longer than the y-shower image.
The differences in the arrival direction cause the y-
shower images to have a characteristic radial alignment
relative to the optical axis of the ACD. Finally, due to
deeper penetration of the p-showers we expect an ultra-
violet light excess for such showers.

The theoretical analysis of the efficiency of the dis-
crimination against the CR background using the dil-
ferences between p- and y-shower images mentioned
above has been carried out in refs. [2-5]. In particular,

it was shown by Hillas [2] that for the 10-m telescope of
the Whipple Observatory it is possible to reject up to
97-98% of the background events while retaining 60—
70% of the useful events induced by y-rays from the
point source. However, the technique proposed in ref.
[2], though using several image parameters simulta-
neously, is. in fact, a one-dimensional technique, as
these parameters are treated separately, and the possible
differences in the correlation between parameters for y-
and p-events are not taken into account. Our purpose is
to investigate the possibility for an improvement of the
background discrimination by using Bayesian decision
rules and multivariate probability density estimation.

2. Simulation of the cascade development

The numerical analysis carried out in the present
work is based on Monte Carlo simulations of develop-
ment of air showers produced by VHE y-rays and
protons as well as the registration of the Cherenkov
light flashes from such showers by a y-ray telescope.
The detailed description of the computational code used
for VHE electromagnetic cascade simulations can be
found in refs. [3,6]. The quark—gluon strings model [7]
was used for the description of hadron and meson
interactions. Some of the calculations of the two-dimen-
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sional Cherenkov light images induced by p-showers
were made using the radial scaling model proposed by
Hillas [8], but comparison of the data obtained using
the two models of strong interactions mentioned above
showed no significant differences in the p-shower image
parameters.

The data used in subsequent sections of this paper
corresponds to a power-law primary energy spectrum
(dB3/dE~ E™"). For y-showers the power exponent vy
was taken as 2.25 in the energy region (0.15-3.0) TeV.
For p-showers y = 2.65, E €(0.3-6.0) TeV.

In our calculations we considered air showers with
impact parameters distributed uniformly in the range
from 0 to 240 m. The optical axis of the y-ray telescope
was assumed to be in the vertical direction. The primary
y-ray arrival direction was assumed to be parallel to the
telescope optical axis. The CR background showers
were displaced isotropically within the field of view of
the telescope.

The main characteristic of the simulated optical re-
flector camera is its effective area Sy =nkS =10 m’
where § is the geometric area, 7 is the reflectivity of the
mirror, and k is the quantum efficiency of phototubes.
The altitude was taken to be 1000 m above sea level.

Two hexagonal configurations of the multichannel
light receiver were considered. The first of them (basic
configuration) has 37 pixels with the angular size of
each of them 0.5° and the total viewing angle 2.5°. For
the second configuration the total number of pixels is
127, the pixel size is 0.25°, and the total field of view is
3.25°,

To reject random flashes from the night sky back-
ground we took into consideration (following the rec-
ommendations of the experiment [9]) only such events
that give signals exceeding 80 photoelectrons (40 elec-
trons for configuration 2) in at least two pixels of the
light receiver (excepting the outer pixel ring for config-
uration 1 and two outer pixel rings for configuration 2).
We attributed shower images having the largest signal
in one of the pixel rings to so-called ZONEs which were
numbered from the central pixel as 0, 1,...,7. In the
calculations of two-dimensional shower image parame-
ters we neglected contributions from pixels having val-
ues less than 1% from the total Cherenkov light flash
intensity.

In the multidimensional analysis presented here we
considered a number of the shower image parameters
proposed earlier in refs. [2,3,5]. They are LENGTH,
WIDTH - the longitudinal and lateral sizes of the
Cherenkov light spot in the focal plane of the telescope
reflector; ALPHA - the angle between the main axis of
the spot and the direction to the focal plane center;
MISS = DIST x sin(ALPHA), where DIST is the angu-
lar distance of the image centroid from the center of the
field; TH = (WIDTH x LENGTH)!/%; AZWIDTH =
WIDTH /cos(ALPHA); U/V — the ratio of the total

flash intensities in ultraviolet (0.2-0.3 pm) and visible
(0.3-0.6 pm) spectral regions.

3. Bayesian classification of Cherenkov light images

The Bayesian approach formalizes the account of all
the losses connected with probable misclassification and
utilizes all the differences of alternative classes [10,11].
The decision problem in a Bayesian approach is simply
described in terms of the following probability measures
defined on metric spaces:

(a) The space of possible states of nature — 8 = (p, v)
where p and y are the indexes of alternative classes
(hypotheses);

(b) The space of possible statistical decisions — 6 =
(p. ¥) — the decision that the examined image is caused
by a primary proton or a y-quantum;

(c) Cost (losses) measure C,; defined on the direct
product of nature states and decision spaces (8 X ). At
correct classification the losses are equal to zero:

CPT* = Cﬁf =0.

If we misclassify the signal event, we decrease the
efficiency of vy-event registration. If we attribute
hadronic images to y-ray ones, we increase the back-
ground contamination. As we expect a significant excess
of background against signal, we are interested in a
strong background rejection. It is not therefore reasona-
ble to take the symmetric loss function C,; = G, = 0.5,
as we did in our earlier studies concerning the cosmic-ray
hadron classification by a transition radiation detector
and iron nuclei fraction determination in the primary
flux [12].

The determination of C,; and C,; values was done
by maximization of the ratio of the signal value to the
background fluctuations. By such a way we can obtain
signal acceptance about 50% and a significant back-
ground rejection (greater than 99%);

(d) Event (measurement, feature) space — a set of possi-
ble results of a random experiment — image parameter
samples obtained by a Monte Carlo simulation. We
shall denote these samples by w, and w, and call them
training samples (TS), as the experimental image han-
dling procedure parameters are determined by these
samples;

(¢) The prior measure Py=(P,. P,). We used for this
measure the uniform distribution P, = P, =0.5. In this
case classification results will depend only on the availa-
ble experimental information and the losses. A more
detailed discussion of the prior measure choice can be
found in ref. [13];

(f) Conditional density (likelihood function), { p(x/
@) p(x/@,)).

Estimating the conditional (on particle type) density
on the basis of a collection of simulations is a typical
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problem in cosmic-ray and high-energy physics. The
application of nonparametric local density estimation
methods (the kernel-type Parzen estimates [14], the K-
nearest-neighbors (KNN) estimates [15]) gives the best
results. Our development of these nonparametric den-
sity estimates [16] makes their use in cosmic-ray physics
considerably more simple and increases their precision.

Let us introduce an invariant metric in an N-dimen-
sional feature space (Mahalonobis distance):

R.\{ah=(x’_x)-r2: H(x"=x), (1)

where 2 is a covariance matrix calculated by means of
the TS to which x’ belongs and T denotes matrix
transposition. Then the KNN density estimate takes the
form:
Pe(x/e) = 3y TR (2)
where V,(x) is the volume of an N-dimensional sphere
containing K elements of the TS nearest to the point x;
K is the parameter controlling the degree of smoothing
of the empirical distribution; M, is the TS size.

As our Monte Carlo is a weighted one, we modify
the KNN method to the so-called “heavy ball” method:

K M

P(x/w)=258/2SV,. i=p7 (3)

i=1 i=1

where S, is the event weight; r is the ball radius; V] is
the ball volume; K; is the number of events falling into
the ball. Here, instead of counting the number of events,
the total weight of the events is calculated, and the ball
radius is fixed instead of the parameter K. The calcula-
tions are carried out for several values of r simulta-
neously. Then the obtained density estimates are ordered
according to their magnitude and the median of the
ordered sequence is taken as the final estimates;

(g) The a posteriori density p(w/x) = { p(w,/x),
p(w,/x)} in which the prior and experimental informa-
tion is included. As we choose a uniform prior informa-
tion, the a posteriori density coincides with the condi-
tional one.

Proceeding from the above definitions we can intro-
duce the Bayesian decision rule:

P(x/w")cﬁ%P(-’C/wp)c'w«ﬁ—’xe{;: (4)

4. Selection of an optimal feature combination

The pattern recognition is a two-stage process. It
includes selection of informative variables and construc-
tion of a classifier (a decision rule) performing the
recognition.

The most important problem in any field is feature
extraction. Though this problem can be formalized by a
linear (or nonlinear) feature space transformation [17],
the feature selection problem depends mostly on the
experimenter’s intuition.

The quantitative comparison of the distinctive infor-
mation contained in one-dimensional distributions can
be made by the so called P-values (and op quantiles) of
standard statistical tests.

P='[:cf(x) dx.

where f(-) is the test function (usually a standard
Gaussian distribution), and op is the test statistic,
calculated by model or experimental data. P equals the
probability of incorrectly rejecting the null hypothesis
(the hypothesis that the y-sample and p-sample come
from the same population). Thus the P-values are in-
versely proportional to the studied image parameters
discriminative value. Instead of using P-values, which
are usually_very small, we shall use the o, quantile
values for comparison purposes.

The Kolmogorov nonparametric test, the Student
parametric test and the Mann—-Whitney rank test were
used for this purpose [18]. The Fisher test was used [19]
to determine the significance of correlation differences.
Beside that, the so-called Bhatacharia probabilistic dis-
tance was used [20].

Table 1
op-quantiles of one-dimensional tests, 37 channels, ZONE 2, #vy/#p = 584 /364
Tests AZWID u/v MISS LENGTH WIDTH TH
Student 24.86 14.37 31.76 19.04 6.85 17.08
Kolmogorov 11.35 7.49 10.79 8.90 5.54 8.95
Mann-Whitney 21.54 16.33 21.64 15.84 10.35 15.81
Bhatacharia 0.61 0.14 0.56 0.52 012 0.36
Bayes error

upper bound 0.27 0.44 0.29 0.30 0.44 0.35
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Table 2

525

Comparison of correlations between parameters of p- and y-shower images by means of the Fisher test P-value, 37 channels, ZONE

2, #y/®p=>584,/364

AZWID u/v MISS LENGTH WIDTH TH
AZWID *
usv 1.968 *
MISS 4.258 227 *
LENGTH 18.561 0.735 0.503 *
WIDTH 24814 6.989 6.985 3.785 *
TH 3102 4.628 4.559 R.655 2974 -

The Bhatacharia distance consists of two parts — the
difference in the mean values and in covariances:

{2+ 3\
! 1 2
Rina = (11 — 12) ( p) ) (B —n2)
1 3.2 +25]
el (5)
2 (l%lwllem

where ;. p, are the feature mean values; 2, X, are
covariance matrices. The Bhatacharia distance is equal
to zero if the classes completely overlap and it is equal
to oo if they do not overlap at all. Through the

Bhatacharia distance one can express the upper bound
of the expected misclassification rate:

UB=1 _exp(_ZRBha)' (6}

In table 1 we give some results on the application of
these statistical tests. The results in this table were
obtained using events having the largest value of the
signal magnitude in one of the pixels from the second
pixel ring (ZONE 2) of the basic light receiver config-
uration. As can be seen from the table parameters
AZWIDTH and MISS have the largest P-quantile val-
ues and the largest values of the probabilistic distance.
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Fig. 1. Scatter plot: WIDTH vs AZWID. »: P images. 364 events, correlation 0.369. G: gamma images. 586 events, correlation 0.910.
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Table 3
Probabilistic distances between parameter distributions of
Cherenkov images of p- and y-showers, 37 channels

Distance WIDTH LENGTH WIDTH WIDTH
AZWID AZWID LENGTH LENGTH

AZWID  AZWID
u/v
Mahalonobis 0,282 0.275 0.278 0.302
Correlation 0.812 0.530 1.046 1.070
Bhatacharia 1.004 0.805 1.324 1.431

Baves error

upper bound 0.167 0.224 0.133 0.120

Therefore, lor these parameters the smallest overlapping
takes place of the probability distributions correspond-
ing to the alternative classes, and these parameters are
the best ones.

The best pairs ol [eatures can be chosen by their
correlation differences in alternative classes (see table
2). We can select the AZWIDTH-WIDTH pair on the
basis that 1t yields the largest Fisher test value. Such a
choice can be explained in the following way. For
v-images the correlation between AZWIDTH and
WIDTH parameters is very strong (~ 1), because the
plane-parallel direction of y-rays arriving causes a ra-
dial alignment of patterns in the telescope focal plane,
and AZWIDTH practically coincides with WIDTH,
Images from isotropically distributed cosmic-ray pro-
tons have no preferable orientation, and the correlation
between the these two parameters is not pronounced.

From the scatter plot of wvalues of parameters
WIDTH and AZWIDTH (fig. 1) we can see that the
y-domain chosen by a correlation analysis (polygonal
region) is considerably better than that obtained in the
ref. [2] (rectangular domain in the left lower corner of
the plot) without taking into account correlations be-
tween WIDTH and AZWIDTH. A more complicated
domain obtained from a multidimensional analysis pro-
vides much higher levels of signal acceptance and back-
ground rejection. On the other hand, the successive
one-dimensional analysis ignores the correlation infor-
mation and thus cannot outline the best y-domain.

From table 3 it is seen that the “correlation” part of
the Bhatacharia distance is about a factor of three larger
than its “mean value difference” part. It is another
confirmation that consideration of correlations is very
important for the imaging technique.

Finally, the features should be selected as follows:
(a) The best single image parameters are selected by

one-dimensional tests (table 1);

(b) The best pairs and triples are selected so that at
least one of the parameters chosen above is included
and their correlations are significantly different for
the y- and p-events (table 2).

Note that there are some restrictions on the possible
space dimensionality which are based on the sample size
[21] and which prevent increasing the number of param-
eters in the combination under investigation. For
Cherenkov images we expect five independent parame-
ters only — two for the image shape, one for orientation,
one for position and one for the ultraviolet fraction (the
U /V ratio).

5. The results of the multidimensional shower image
analysis

To apply the technique developed here to shower
image classification we used the so called “leave-one-
out-at-a-time” test (the U-method). It has been shown
in [22] that the U-method provides much lower bias
than other methods.

According to the U-method, one event is removed
from the TS, the training (conditional density estimate)
is performed without it, then that element is classified
and replaced in the TS. This procedure is repeated until
all the TS elements are classified. By this the error rates
R, and R corresponding to the maximum available
value of the signal-to-background-ratio improvement-
factor,

N== (I = R\‘ﬁ)/'l.":R—p;f‘ (7)

are obtained.

In table 4 we present some results of application of
this technique for the case of the a parameter. In
addition, we present in this table results obtained on the
basis of the Monte Carlo calculations of Hillas taken
from ref. [23]. [t may be seen from the table that there is
a good agreement between the data.

Table 4

Data on the discrimination against p-showers in the case of
single discrimination parameters usage, 37 channels, ZONEI
and ZONE2

LENGTH WIDTH DIST MISS AZWID

Our data *" 0.932 0.942 0.791 0.714 0.615
0.186 0.458 0.384 0.206 0.069
2.162 1.392 1.276 1.571 2.346
From ref. [23] * 0.826 0.858 0.935 0.676 0.768
0.210 0.367 0.683 0.231 0.121
1.802 1.416 1.132 1.408 2.204

“ 1st line: acception efficiency for gamma showers R.5 2nd
line: contributed proton showers background R 3rd line:

. d:scnmt_nallon efficiency |_mprcwcmcf1l Roz/\Rpy- . _
To obtain these data special calculations were done in which
the same observation level and effective mirror surface square
as in ref. [23] were used.
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Table 5
Comparison of different parameters combinations for multidimensional proton background rejection
ZONE EVENT TH WIDTH WIDTH WIDTH WIDTH TH
(&Zy,/&#P) LENGTH LENGHT LENGTH LENGTH LENGTH LENGTH
AZWID * MISS * AZWID * MISS u/sv usv
u/ve AZWID * AZWID *
37 channels o
1 639,229 0.421 0.228 0.333 0.445 0.346 0.379
0.016 0.008 0.008 0.004 0.003 0.003
3.320 2.549 3.674 6.973 6.317 6.572
2 584 /364 0.537 0.411 0.501 0.698 0.51 0.384
0.001 0.004 0.001 0.012 0.001 0.001
21.820 6.766 13.077 6.299 17.652 11.410
All 1797 /939 0.317 (.543 0.384 0.394 0.363 0.411
0.004 0.047 0.010 0.018 0.013 0.018
4.958 2.503 3.896 2958 3172 3.050
14&2 1233 /593 0.477 0.315 0.414 0.565 0.429 0.381
0.007 0.006 0.004 0.009 0.002 0.002
5.689 4.232 6.806 6.388 10.210 9.071
127 channels
3 336,156 0.605 0.722 0.584 0.552 0.654 0.628
0.003 0.008 0.002 0.001 0.002 0.002
10.770 8.273 12.120 15.560 14.624 14.050
4 345,214 0.624 0.658 0.649 0.583 0.624 0.590
0.004 0.004 0.004 0.004 0.004 0.004
9.448 9.887 9.834 8.836 9.449 8.943

“ 1st line: acception efficiency for gamma showers R
discrimination efficiency improvement Rv?/l,-"IRN .

7 2nd line: contributed proton showers background R,;: 3rd line:

The results of multidimensional analysis for several
image parameter combinations are presented in table 5.
It is seen that background contamination can be re-
jected down to a few tenths of a percent. For the 37 _
channel receiver configuration with a pixel size of 0.5° 2
the best background discrimination is attained for the g
second ZONE. The 127-channel camera with a pixel £
size of 0.25° provides almost uniform background re- =
jection over all the central ZONEs. 3
It should be noted that the very large % values in o
table 5 (values in excess of 10) would have large statisti- 3
g
o
=]
=
8
a
L]
3]
o

1030 moge parometers used width length,czwicth
i 37 channels

2 zone

cngie 2.5 degree, pixel size 05 degree

gammaz showers acception

cal uncertainty due to the limited number of back-
ground images.

As you can see in fig. 2 we can choose the value of ]
the losses measure to obtain the desirable relation be- ]
tween the coefficients of the signal acceptance and O 0p 2
background rejection. Moving to the left along the : /
x = axis of fig. 2 we can reach the almost background-
free region at losses value < 0.5. But for small values of
losses (this corresponds to low values of background 3
contamination) the signal acceptance level will be quite
high (say, about 0.5) only in the case of multidimen- Fig. 2. Bayesian classification.

P showers contominotion
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Fig. 3. Preference curves.

sional analysis. This can be seen from fig. 3 where the
relations between background rejection and signal de-
tection effectiveness are presented for parameters com-
binations AZWIDTH + WIDTH + LENGTH, AZ-
WIDTH + WIDTH.

To conclude, multidimensional analysis provides
much greater discrimination efficiency compared to the
application of several image parameters independently
without taking into account their correlations as in ref.
[24].
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