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A program is developed for simular and experimental data handling. The main purposes are: the choice of the model most
precisely describing the experiment, classification of particles and interaction processes. Procedures used: Bayes error
calculation, K nearest neighbour density estimation, “Leave-one-out-at-a-time” test. Used nonparametric methods provide
quantitative comparison of multivariate distributions and distribution mixture classification. Applications: high energy

physics, cosmic ray physics.
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LONG WRITE-UP

0. Introduction

The scientific method is characterized by data
classification, the study of their interrelations and
relations to past experience, summarized in vari-
ous theories and hypotheses. Usually, it is impos-
sible either to prove or to refute hypotheses by
deductive method. The challenge is to draw sensi-
ble conclusions from noisy, discrepant informa-
tion.

The main aspect of applied statistics is collec-
tion and interpretation of data, the interpretative
aspect being the one that is now regarded as the
essence of the subject [1]. The fundamental idea of
statistics is that useful information can be acquired
from individual small bits of data. Inductive meth-
ods lead to empirical statements, that may be
connected with theoretical ones by means of ra-
tional inductive conclusion rules [2].

However, it is very important to provide the
scientist with an objective criterion by which he
can judge the claims of hypotheses (models) under
investigation. By model we mean a complete prob-
ability statement of what currently is supposed to
be known a priori about the mode of generation of
data and of uncertainty about the parameters [3].

If this statement consists in the existence of an
analytic distribution family (like Poisson or Gaus-
sian), appropriate to the problem at hand, we have
a prescribed parametric model. For such paramet-
ric models a well known concept of statistical
inference consists in obtaining estimates of its
parameters and verifying the validity of the cho-
sen family [4].

We shall restrict ourselves to the binary com-
parison case, that is, comparisons of two from
many competing hypotheses at a time. Qur exam-
ple concerns a case where we want to realize the
choice of one of two well-defined hypotheses-
cosmic ray hadron classification by means of a
Transition Radiation Detector (TRD) [5].

The classification problem is traditionally de-
scribed in terms of null and alternative hypothesis,
critical and acceptance regions, and level of sig-
nificance [6].

The best critical region is constructed by means
of the Likelihood Ratio (LR),

_ p(x/6})
p(x/6%)

Here x is a many-dimensional observable, in our
case the energy release in TRD layers. p(x/6*)
and p(x/6;) are conditioned on particle type
probability density functions, obtained separately
for pions and protons. 8* is a Maximal Likel-
hood Estimate (MLE)

LR(x) (0.1)

M

§* = argmax »_ In p(x,/0), (0.2)
8 i=1

where set {x;}, i=1, M, is obtained from TRD

callibration or, for superaccelerator energies, by

simulation. M is the number of callibration or

simulation trials.

Leaving apart the question about effectiveness
of MLE for finite samples [7], we want to check,
whether the MLE method permits us to do a very
powerfull summary of data — we are summarizing
a {x,;} dataset by a probability density. Maximal
Likelihood Summary (MLS) can be used for com-
parative purposes [8].

But for almost all problems of inference, the
crucial question is whether the fitted probability
family is in fact consistent with the data. Usually
parametric models are chosen for their statistical
tractability, rather than for their appropriatness to
the real process being studied.

Of course, any statistical inference is condi-
tioned on the model used, and, if the model is
oversimplified, so, that essential details are either
omitted, or improperly defined, at best only
qualitative conclusions may be done. Now, in
cosmic ray and accelerator physics very sophysti-
cated models are being used, completely mimick-
ing a stochastic mechanism where by data is gen-
erated. An example of such models is the Geant3
system, designed for detector description, simula-
tion and optimization studies [9], and models of
cosmic radiation propagation through atmosphere
and detectors [10].
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Such models are defined on a more fundamen-
tal level than parametric models, and provide us
with a wide range of outcomes from identical
input variable sets- “labled”, or “training” sam-
ples (TS). These sets of events with known mem-
bership representing a general, nonparametric
mode of a priori information. For our example, we
obtained samples, corresponding to pion and pro-
ton traversals through TRD, i.e. w, and w,,.

So, usually, for experimental physics data han-
dling, the likelihood function cannot be written
explicitly, and we deal with implicit, nonparamet-
ric models, for which no parametric form of un-
derlying distribution is known, or can be assumed.

Although using simulation to analyse data in
high energy physics is wide-spread, we are aware
of very few systematic investigations of theoretical
aspects about how data may be compared with its
simulated counterpart [11,12]. What we need is a
well defined technique, what one can call Monte-
Carlo Inference.

The term “Monte-Carlo Inference” at first ap-
peared in the discussion of the valuable paper by
Diggle and Gratton, where analitically intractable
model fitting facilities were established [13].

This present paper considers classification and
hypothesis testing problems in the framework of
Bayesian paradigm [14]. The inference problem in
Baysian approach is similarly described in terms
of [X, ©, D, P,, p(x/8), L(d, 8)], where X is
an event (measurement, feature,...) space-collec-
tion of possible outcomes of random experiments,
6> O is a parameter or index of various classes,
types, hypotheses (further we shall denote these
classes by w;, or explicitely-by w,, and w,), Py is
the prior density, p(x/8) is the conditional den-
sity, D is the decision space, containing possible
decisions, and L(d, 8) is the nonnegative loss
function, defined on D X 6.

For our example specification of prior density
and loss function meets no difficulties: ©-space
includes two values pr and =, with prior probabili-
ties P, and P,, (P, + P, = 1) which are obtained
from a previous most confident experiment. If
there is no such experiment, the uniform density
can be used: P, =P, =0.5.

For classification purposes a simple one to zero

loss function is usually used: losses are equal to
zero for a correct decision and one for any error.

1. Bayes decision rule, the measures of the close-
ness of empirical data and model

Bayssian approach provides the general method
of incorporation of a priori and experimental in-
formation. Bayes theorem,

plw/x) = —LM (1.1)
E P;'P(x/‘*’;)

i=1

gives us a posterior to the x-density, i.e. the prob-
ability of wclass(hypothesis) to be truth, if the
x-value was observed, and before experiment the
P; prior density was assumed. L is the number of
hypothesis under investigation.

The decision rule, that assigns observable x to
the class with the highest a posteriori density w*
(Bayes decision rule), takes into account all usefull
information and all possible losses due to any
wrong decision,

w* = argmax p(w,/x), i=1, L. (1.2)

For hadron classification Bayes decision rule
takes the form

p(wo/x) S p(wp,/x) 2850w = (PE (13)

So, the posterior density is the basis of statisti-
cal decisions on particle type and on simular and
experimental data closeness. The term closeness
refers to the degree of coincidence, similarity,
correlation, overlapping or any such variable. Ex-
amples of these separability measures are the
Kolmogorov variational distance (L1-metric) [15],

KJ'=f|p(wexp/x)_p(wj/x)| dx, (14)
X

and the Bhattacharya distance (Hotteling coeffi-
cient),

Bj‘:fX(P(@c;p/x)p(wj/x))u's dx. (1.5)
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Another possibility to compare experimental and
different model samples is the loglikelihood func-
tion estimation,

L= 3 In p(x,/w;), (1.6)

i=1

where p(x,/w;) is the probability density ob-
tained with the w; training sample, corresponding
to the jth class and M is the number of observa-
tions.

The most convinient closeness measure, com-
monly used in pattern recognition problems for
feature extraction [16], is Bayes error (Bayes risk
for 0-1 loss function). Bayes classifier provides a
minimum probability of error among all classifiers
for the same feature set. The probability to mis-
classify the x observable, using Bayes rule, is
equal to

r(x) =1-p(w*/x), (1.7)
or, for our example,
r(x) =min{ p(w,/x), p(w,/x)}. (1.8)

Finally, Bayes error is determined by the expres-
sion

R=fxr(x)p(x) dx, (1.9)

where p(x) is a mixture of distributions, repre-
senting the denominator of eq. (1.1).

However, it is impossible to calculate R and
other distance measures, as the analytic expression
of conditional densities and, hence, the posterior
ones, is unknown. Therefore, we are obliged to use
their nonparametric estimates. Nonparametric in
the sense, that the density function is not a par-
ticular member of a previously chosen parametric
distribution family, but an estimate based only on
sample information and on very mild conditions
on the underlying density (usually only continuity).

The nonparametric density estimation will be
considered further; now we shall gain some insight
into the methods of using the training sample in
the procedure of Bayes error calculation.

Three main methods are distinguished [17]: the
resubstitution—P method: the classifier is both

trained and examined on the same sample ie.,
first the conditional densities p(x/w,) are de-
termined by TS, and then classification is carried
out with the same sample; the holdout—H method:
the TS is divided into two equal parts, with one
half for the training and the other for examina-
tion. The P-method decreased Bayes risk; the H,
on the contrary, increased it. Besides that the
H-method does not use the TS effectively.

The leave-one-out—-U method is free of such
defects. One element is removed from the sample,
the training is performed without it, then this
element is classified and replaced in the TS and
the procedure is repeated, untill all the TS ele-
ments have been classified. The U-method (also
refered to as the cross-validation method) has
been shown to have a much smaller bias than
other methods, and it seems to be insensitive to
data departure from normality [18].

The empirical error count was one of the first
suggested estimation procedures. Let us introduce
a random variable,

e(x) = {0, if x is (I:lasmﬁcd correctly, (1.10)
1, otherwise.
The empirical error R® is determined by
M
1 #
f= — =0 1.11
RE= o ¥ e(x) = ==, (1.11)

i=1

where #,_ is the number of errors, commited
during leave-one-out test over TS.
The estimate variance equals
1

ope=—R(1-R).

A= (1.12)

Another type of estimate the so called average
conditional error RP, is connected with approxi-
mation of the expression (1.9),

M
RP= L % min{ p(wi/x,), p(wy/x)}. (113)

i=1]

It is interesting to note, that the variance of this
estimate proves to be less, then that of the previ-
ous one,

R

1
o§p=ﬁR(]—R)f— R

(1.14)
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This result seems to be paradoxical, as in the
second case the information on the x observable
true lables is not used. This contradiction is ex-
plained by the fact that RP takes on a continuum
of values approaching R, while R® takes on only
discrete values, this quantization causing larger
spread around R.

Comparing of experimental and model data
can be considered as a two stage process. At first,
relevant features must be selected from all availa-
ble measerments. The feature selection problem
can be viewed as an optimization problem, re-
quiring a criterion function and a search proce-
dure. We do not deal with methods of optimal
subset selection in this paper; suppose we have an
heuristic procedure to generate probable subsets,
then we recomend Bayes error as a criterion func-
tion. Of course, one can use any other separability
measure, but Bayes error is most straightforward
and its estimation methods for high dimensional-
ity spaces are well develop. Calculating Bayes
error for different subsets of features, we shall
select a subset that provides the maximal value of
R; this subset will have the maximal differentia-
tion power. With extracted features the tasks of
classification, determination of different particle
fractions in the mixture distribution, etc., can be
carried out.

It must be mentioned, that actual values of
both likelihood function and Bayes error have no
statistical interpretation; only comparative conclu-
sions may be done. If we want to evaluate statisti-
cal significance of our inference, some distribution
free test must be used. We can recommend the
permutation test [19] and the percentile test, using
a bootstrup distribution, providing approximate
confidence intervals in small sample nonparamet-
ric situations [20].

3. The nonparametric probability density estima-
tion

The nonparametric density estimation methods
have received a large development efforts in the
last decade [see, e.g. ref. [21], mainly due to their
simplicity and absence of excessive requirements
~on the form of the distribution function. Most

popular kernel type estimates were introduced by
Rosenblatt [22] and studied by Parzen [23]. In the
Parzen procedure every point of TS, w, is sub-
stituted by a bell-like function, and the density in
arbitrary point x of the feature space is obtained
as a superposition of numerous “kernels” centered
about each TS point,

pa(x)= 37 & (/WK {(x=x)/h), (1)

i=1

where K(z) is a kernel function, satisfying
[K(z) dz =1, kernel size h is a smoothing factor,
determining the “spread” of the kernel (for Gaus-
sian kernels h = mean square deviation), N is the
dimensionality of the feature space, {x;} @ w;.

Very close related to the Parzen estimates, KNN
estimates were introduced by Fix and Hodges [24]
and studied by Loftsgaarden and Quesenberry
(25],

K-1 2Y%d Y (x)

Pk(x)=ms Vi(x) = NI‘(N/2)'
(2.2)

where I'(-) is Gamma function, V, (x) is the
volume of the N-dimensional sphere S, containing
K elements of TS, nearest, in any convinient met-
ric, to point x, d,(x) is the distance to the Kth
nearest neighbour of point x.

Two metrics are usually used: the Euclidean
metric and the Mahalonobis metric [26). For the
latter the distance between observable x and TS
element y is equal to

D= (x—») =" (x-y), (2.3)

where X is the covariance matrix, calculated by
means of TS, to which y belongs. The use of the
Mahalonobis metric allowes one to take into
account the correlation information, moreover, the
distances, calculated in this metric, are scale in-
variant, so, no transformation of initial data is
necessarily.

The relationship of KNN to the Parzen esti-
mate is brought out if the kernel function is uni-
form over region S, and zero outside, so only
elements of TS within region S, centered at point
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x, equally contributed in the density estimate.

Despite underlying density variations in feature
space, in every point the density is estimated by K
elements, and in low density regions the cell size is
much greater than in high density regions. KNN
estimates are “fixed event number in the cell”
estimates, in contrast with “fixed cell size” histo-
gram estimates.

If the K-value is small relative to TS size M, we
have nearly the same probabilities for all TS sam-
ple points contributing to the estimate, and aver-
aging over the S region, centered at a x point and
containing K neighbours, is valid. But, on the
other hand, it is desirable to have K as large as
possible to reduce the influence of fluctuations in
TS and achieve statistical stability. It is very dif-
ficult to choose the optimal K value to cohere
these two requirments for different dimensionali-
ties of the observation space, various underlying
distributions and TS sizes. )

Although many theoretical investigations prove
the asymptotically unbiasness and consistence of
kernel type estimates [27] and many recommanda-
tions have been done on kernel type and width
and optimal K value, very little is known under
finite sample condition. Recently, K. Fukunaga,
the pioneer of KNN -and Parzen method develop-
ments for pattern recognition problems, claimed
that “unrealiability of the estimators in finite con-
ditions is the major obstacle toward their imple-
mentation in practice, and theoretically de-
termined values of h or K gave very discouraging
and inconsistent results™ [28].

We tried to automate the procedure of optimal
K value selection by using such a surprisingly
powerfull technique as ordered statistics.

In ref. [29] it was suggested to calculate the
KNN density estimates for several, IQ (IQ < M,
usually 1IQ = M /2), different K values simulta-
neously. By means of a sequence of estimates,
{ pe(x)}, k=1,1Q, the averaged estimate, KNN3,
is constructed,

1 R
plQ(x) = 10 );1 pe(x). (2.4)

This estimate uses more detailed information
on the neighbourhood of point x and is more

stable. However, in the sequence of estimates
{ px(x)} there may be significant deviations from
the true density value, due to large variance of the
simple KNN estimate, that distorts the average
estimate.

To weight effectively every member of the se-
quence, we introduce a new KNN estimate in the
form of a linear combination of ordered statistics,

1Q

P[:Q](x) = k);l C;‘P;k](x),

1Q

Y e =1, (2.9)
k=1

where square brackets [] indicate, that the se-
quence { p( (x)} is ordered according to the
magnitude of the members.

If we heavily weight the members in the middle
of the ordered sequence, we shall obtain a stable,
with respect to the fluctuations in TS, estimate.
An example of such an estimate is the median
estimate, p{i&|(x), for which

1, ifi=|1Q/2|+1,
6= IQ is an odd number, (2.6)
0, otherwise.

| -] stands for the whole part of a number. If IQ is
an even number, two middle order statistics are
weighted with 0.5. So, for every x point, there will
be done an unique choice of a K value (or two K
values for even IQ). In the middle of an ordered
sequence it will appear the most stable member of
the sequence. This, self-adjusting character of the
median estimate, as we shall see further, leads to
estimates better, than one can obtain with any
fixed K value.

- Our K-dependence investigations [30] show, that
for regions with very low density (so called, pe-
ripheral regions) simple KNN estimates with K =
2/7 (for TS size 50,/400), are preferable. It can be
explained by the fact, that for points in this re-
gion, whenever NN “enters” a high density region,
further increase in K will not lead to any signifi-
cant increase of the KNN volume. Hence, as one
can see from (2.2), values of most terms of the
ordered sequence will be overestimated, and
median estimate will be optimistically biased.
Therefore, at the peripheral points, that are cho-
sen according to the relative size of local region it
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will be better to calculate the density by a simple
KNN rule.

For every point x a local neighbourhood size is
defined as,

1 MSQ
P[_oc(x;):m dj(x;')! (2-7)
j=1

where d,(x) is the distance to the jth nearest
neighbour of a point x; and MSQ = VM . And, if
this “local region size” is 3 times greater, than

Proc = 37 X proc(x). (28)

i=1

the density at point x; is estimated by a simple
KNN rule. Median estimates with such peripheral
points corrections, we shall call adaptive KNN
estimates, p?ﬁ;,!(x)‘

KNN density estimation enables effective con-
trol of the degree of smoothing of empirical distri-
butions. Displaying the same distribution by dif-
ferent modifications of the KNN method, the
peaks in the distribution will become more evi-
dent.

Recently an evidence of a narrow enhancement
in the pp mass distribution from reaction yd —
ppm~ was reported [31]. The statistical signifi-
cance of this enhancement was proved by the
KNN density estimation method, showing the ob-
served structure of the mass distribution better,
than the Histogram method. So, KNN median
and adaptive modifications can also be very usefull
for resonance data analysis.

4. Information input and output

The tasks of particle classification and Bayes
risk estimation, of obtaining smooth estimates of
the probability density, etc. are recomplished with
the KNN module. Some simple subroutines are
used for nearest neighbour distances calctlation
and ordering, local region size determination
(DISTNN,DIST,ORDER,RSLOC). Covariance
matrix calculation and inverting is done by MISR,
CORINYV and SMXINV modules.

The exchange of information with the KNN
module is realized by means of formal parameters
only (no COMMON blocks are used), though it
leads to a rather long list of parameters, the unde-
sirable collateral effects of the module on the
main program are practically excluded, and high
obviousness of operation of the module is pro-
vided [32].

All statistical procedures are carried out simul-
taneously for different modifications of the den-
sity estimator. The computation load, however,
increased only slightly, since wasting most time
ordering NN distances, is done only once. In the
presented version of the program the ordering is
carried out by simple DO-loops but it can easily
be changed by some fast procedure e.g. FLPSOR
from the CERN program library, MO1AJF from
the NAG library, or by a special routine for
finding NN, based on ordered partition of each
projection axis [33].

The control parametres and arrays of the mod-
ule are:

N is the features space dimensionality; NS is
the dimensionality of the subset under investiga-
tion; M is the size of the TS; L is the number of
classes (for simplicity, it is assumed here, that all
classes have the same TS size); MP is the control
sample size; IQ is the size of ordered densities
sequence; METRIC is the code for choosing the
metric in which distances to NN are calculated,
the value METRIC = 0 corresponds to the Maha-
lonobis metric; the IMODE parameter chooses
the program is operation regime: IMODE =1,
classification and likelihood function catcualation,
IMODE = 2, Bayes error calculation, IMODE = 3,
density estimation.

D(IQ,L,MP) is the basic neighbourhood infor-
mation, distances from every point of the control
sample to each class of the training sample; NL(N)
is the code combination, by means of which the
feature subset selection from primary observables
is realized; code 1 in the ith position signifies the
ith feature inclusion in the subset under investiga-
tion; AP(L) are the prior probabilities of the mod-

‘els being studied; PST(L) are current values of

posterior densities; RM(L) is the mean local re-
gion size for TS classes; C(IQ) are the coefficients
of the order statistics. During the operation in
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“leave-one-out” for Bayes error calculation, the
number of TS classes L = 2, and in the subroutine
DISTNN the control sample CS(MP) is sub-
stituted by the training one.

The number of events, separately of the w,,
i =1, L, classes, classified as representatives of the
w;, j=1, L, classes, by means of the various
modifications of the KNN method, are placed in
the array CL(L,L,IQ + 2), where

i=1,2,...,1Q
error rates for simple KNN,
eq. (2.2)

. i =1Q+1
CL(L,L,i)={"' o :
(L.L.i) rates for median estimate,

egs. (2.4), (2.5)
i=1Q+2,
rates for adaptive estimate.

(3.1)

This information enables calculation of mis-
classification rates for every model separately, e.g.
R, _ . and Ry where

R=P,R, . +P,R (3.2)

preotpr — o

Using these rates, one can reconstruct the true
fraction of iron nuclei in the primary flux [34] or
the pion fraction in the hadron flux:

R P*—R
" 1—-R

w — pr

" (3.3)

m—pr  Nprog

where P* is portion of experimental events clas-
sified as pions by Bayes decision rule, R, . ,, and
R, _. , are error rates obtained from the same TS.

Values of the Bayes error, calculated by averag-
ing the posterior error RP are returned in the
RP(IQ + 2) array. The R® values, the misclassifi-
cation rates, are returned in the RE(IQ + 2) array.
The order of values in the arrays is analogous to
CL.

In the classification regime the class lables, to
which the control events are refered, are placed in
the array LUM(MP). Likelihood function values
are returned in the FLIK(L) array.

In the regime of constructing the density
smoothed estimate, density estimates for the L
classes of TS, are placed in the DS(MP,IQ + 2)
array.

Besides the presented, some operational arrayes
are used, PKNN(IQ) and DEN(L,IQ + 2).

5. Program testing

Program testing was performed with the use of
samples generated according to the normal (Gaus-
sian) distribution. The choice of this distribution
1s due to its extensive use as a simple test to
compare various density estimation methods, as
well as due to the simplicity of calculating the true
value of Bayes error, allowing a comparison of the
estimates with the calculated values,

R=®(-D,,./2), (4.1)

where @ is the cumulative normal distribution
function and D, is the Mahalonobis distance
between mathematical expectations of the two
classes.

From the program output one can see results of
the KNN operation in different modes: Bayes
classification and likelihood estimation of one of
the two normal population’s, N(0, 1) and N(1, 1),
control sample is from the same population as the
first class of the training one, the likelihood func-
tion for the “true” class (hypothesis) is much
greater than for the second class: Bayes error
values for different KNN modifications can be
compared with the true value, R = 0.3085; density
KNN estimates are calculated for 27 different
estimation modifications.

For investigations of bias and consistency of
KNN estimates several random samples of fixed
size were generated from the normal distribution;
the density was estimated at 51 points, uniform
distributed over an interval (— 5, 5), then the mean
square error (MSE) was calculated,

MSE{p(x)} =E{{p(x)-p(x)}’}.,  (42)

where the mathematical expectation is taken over
all possible samples of fixed size drawn from
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Fig. 1. The test results for the comparison of simple KNN. average, median and adaptive estimates.

general population; p(x) is one aof considered
KNN density estimates.

The integrated mean square error (IMSE) equals
IMSEﬁ=fXMSE{ﬁ(x)} dx, (4.3)
where MSE(x) was obtained by averaging density
estimates, calculated with 25 independent sam-
ples. This procedure was repeated 10 times to
evaluate the mean and standard deviation of
IMSE.

Figure 1 showes the results of testing for the
comparison of simple KNN, average, median and
adaptive estimates. Standard normal density
N(0, 1) was estimated. Obviously, the adaptive

estimates are much more precise than the ones
obtained with any fixed parameter K.

Table 1 presents the results of comparing the
adaptive KNN method with the Parzen method
and MLE with the penalty function (the latter two
are taken from ref. [27]. IMSE and its variance (in
brackets) are calculated by 25 X 10 independent
samples from N(0, 1) and bimodal distribution
p(x)=05N(—15,1)+ 0.5N(1.5, 1). The density
was estimated in 51 points on the interval (=35, 5).

The adaptive estimates have shown somewhat
worse results. However, it should be noted that the
parameters of the Parzen and ML methods have
been chosen with the aid of information on the
true underlying density, while the adaptive KNN

Table 1
IMSE of various nonparametric density estimators
Distribution TS size MLM with Parzen with Adaptive

M penalty Gauss. kern. KNN
N(0,1) 25 0.0100(0.0080) 0.0160(0.0120) 0.0140(0.0100)
N(0,1) 100 0.0037(0.0021) 0.0050(0.0027) 0.0052(0.0020)
N(0,1) 400 0.0015(0.0008) 0.0020(0.0009) 0.0032(0.0012)
Bimodal 25 0.0100(0.0030) 0.0090(0.0700) 0.0012(0.0030)
Bimodal 100 0.0036(0.0007) 0.0036(0.0020) 0.0048(0.0017)




390 A.A. Chilingarian / Siatistical decisions under nonparametric information

Table 2
Comparison of Bayes error estimation R® and RP methods
N M R O . Gre 6o MSE ge MSEp.
1 100 0.3085 0.046 0.024 0.039 0.026 0.0005 0.0013
1 200 0.3085 0.033 0.017 0.026 0.015 0.0003 0.0008
2 50 0.2340 0.048 0.031 0.044 0.027 0.0030 0.0039
8 50 0.5000 0.070 0.050 0.050 0.012 0.0050 0.0044
10 50 0.5000 0.070 0.047 0.047 0.017 0.0040 0.0046

method uses only the sample information. In
processing real data, of course, the analytical den-
sity form is unknown, therefore, the slight de-
terioration of accuracy is compensated with im-
proved procedure stability.

The Bayes risk was calculated for the samples
from normal distribution at various feature space
dimensionalities and Mahalanobis distances. The
calculations were performed with use of 10 inde-
pendent samples. Table 2 presents the variances,
calculated by eqgs. (1.12) and (1.14), their estimates
and mean square errors. A good agreement of
sample and theoretical values of variances is ap-
parent, and although the variances of the RP
values are less than those of R€, their bias leads to
their greater mean square deviation. Therefore, the
empirical error count estimator is more preferable,
especially for feature spaces of large dimensional-

ity.

References

[1] E. Lederman, Handbook of Applied Mathematics: Statis-
tics (Wiley, New York, 1984).

[2] P. Hajek and T. Havranek, Mechanizing Hypothesis For-
mation (Springer, Heidelberg, 1979).

[3] G.E.P. Box, Technometrics, 26 (1984) 1.

[4] E.A. Eadie, D. Drijard, F.E. James, M. Roos and B.
Sadoulet, Statistical Methods in Experimental Physics
{(North-Holland, Amsterdam, 1971).

[5] A.A. Chilingarian, in: Proc. of the Symp. on High-Energy
Particles Transition Radiation, Yerevan, 1984.

[6] S. Zacks, The Theory of Statistical Inference (John Wiley
& Sons, New York, 1977).

[7] J. Berkson, Ann. Stat. 8 (1980) 457.

[8] B. Efron, Ann. of Stat., 10 (1982) 340.

[9] R. Brun, F. Bruyant, M. Maire, A.C. McFerson and P.
Zanarini, GEANT3, CERN Preprint, DD/EE/84-1
(1986).

[10] A.M. Dynaevsky et al., in: Proc. FIAN, Moscow, 1984.

(11] IN. Friedman, Data Analysis Techniques for High-En-
ergy Physics, CERN Yellow Report (1974).

(12) A.A. Chilingarian, VANT, Ser. Tecn. Phys. Exp.. Khar-
kov, 1981.

[13] P.J. Diggle and R.J. Gratton, J. Roy. Statist. Soc. B 46
(1984) 193.

[14] D.V. Lindley, Bayesian Statistics, (Soc. for Indust. and
Appl. math., Philadelphia, 1978).

[15] M. Yablon and J.T. Chu, IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, PAMI-2 (1980) 97.

[16] K. Fukunage and R.D. Short, IEEE Trans. on Infor-
mormation, IT-26 (1980) 59.

[17] G.T. Toussaint, IEEE Trans. on Information, IT-20 (1974)
472.

(18] S.M. Snappin and J.D. Knoke, Technometrics, 26 (1984)
371. :

[19] F. James, Determining the Statistical Significance of Ex-
perimental Results, CERN Preprint DD /81-02 (1981).

[20] B. Efron, Canadian J. Statist. 9 (1981) 139.

[21] L. Devroye and L. Gyorfi, Nonparametric Density Esti-
mation. The L1 View, (Wiley, New York, 1985).

[22] M. Rosenblatt, Ann. Math. Stat. 27 (1956) 832.

[23] E. Parzen, Ann. Math. Stat. 33 (1962) 1065.

[24) E. Fix and J.L. Hodges, Project 21-49-004, Report 4,
USAF School of Aviation Medicine, Randolf Field, Texas
(1951).

[25] D.O. Lofsgaarden and C.D. Quesenberry, Ann. Math.
Stat. 36 (1965) 1049.

[26] P.C. Mahalonobis, Proc. of the Nat. Inst. of India 2 (1936)
49.

[27] R.A. Tapia and J.R. Thompson, Nonparametric Probabil-
ity Density Estimation (The John Hopkins University
Press, Baltimore and London, 1978).

[28] K. Fukunaga and D. Himmels, IEEE Trans. on Pattern
Analysis and Machine Intelligence, PAMI9 (1987) 634.

[29] L.R. Rabiner, E. Levinson, A.E. Rozenberg and J.G.
Wilpon, IEEE Trans. on Acoustics, Speech, Signal
Processing, ASSP-27 (1974) 336.

[30] A.A. Chilingarian and S.Kh. Galfayan, Stat. Problems of
Control, Vilnius, 66 (1984) 66.

[31] B. Bock, W. Ruhw et al, Nucl. Phys. A 459 (1986) 573.

[32] P.E. Gill, W. Murray and S.M. Piches, ACM Trans. of
Math. Software, 5 (1979) 266.

[33] B.S. Kim and S.B. Park, On Pattern Analysis and Mac-
hine Intelligence, PAMI-8 (1986) 761.

{34] V.G. Denisova, A.M. Dunaevsky, S.A. Slavatinsky et al.,
in: Proc. of the 20th ICRC, Moscow, 1987, p. 390.





