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An algorithm for the analysis of multiparticle final states is offered, By the Renyi dimensionalities, which were calculated
according to experimental data, either the hadron distribution over rapidity intervals or the particle distribution in an
N-dimensional momentum space, we can judge the degree of correlation of particles, separate the momentum-space
projections and areas where probability measure singularities are observed. The method is tested in a series of calculations
with samples of fractal object points and with samples obtained by means of different generators of pseudo- and

quasi-random numbers,

1. Phenomenological description of multiparticle
production

The significant increase of information about
multiparticle final states produced in particle col-
lisions with higher and higher energies makes it
urgent to develop non-traditional methods of
analysis of experimental data. From the parame-
ters of the detected particles one can construct
many joint and conditional probability distribu-
tions which are much more informative than the
averaged characteristics [1].

Since the general theory of strong interactions
is not yet complete, a phenomenological ap-
proach to ultra-high-energy collisions is widely
used. One of the first theoretical generalizations
of multiparticle production processes is KNO
scaling, which predicts that at sufficiently high
energies the distribution of hadron multiplicity P,
obeys the scaling

PLn)=¥(z), z=n/{n), (1)

where P, is the probability to observe n hadrons
in the final state, and {») is the mean multiplicity

at a given energy.

Since the Poisson distribution
P,=<{(n)" e ¢ /n! (2)

describes the hadron multiplicity badly, it was
proposed to use the negative binomial distribu-
tion and the Bose-Einstein distribution, which
supposes the presence of k independent random
sources with the same intensity:

P{Xn) =¥, (z) =k*z*"'e* 2 /(k—1)\. (3)

Carruthers has shown [2] that ¥,(z) describes the
ISR and SPS data well.

Though the description of the nature of ran-
dom sources meets difficulties, it has recently
been possible, using the Bose—Einstein correla-
tions, to estimate the size of hadron sources [3].
The source size in p—p collisions did not change
when the energy changed from 0.9 to 2.2 TeV in
the c.m.s. (as was to be expected, if the KNO
scaling was satisfied) and was in a linear depen-
dence with the charge density in the pseudo-
rapidity bin (An/An):

Rpery = 0.59 + 0.05(An /A7), (4)
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Recently the particle distribution in rapidity
windows has become the object of great atten-
tion. Large fluctuations in some rapidity bins,
which were found in experiments at colliders and
in cosmic-ray experiments [4], could not find any
description in the frame of earlier suggested phe-
nomenological mechanisms. The conclusion was
drawn that the large fluctuations in the rapidity
distributions reflect non-trivial fluctuations of
hadronic matter during collisions.

Until how the instrument of investigation of
non-trivial rapidity correlations has been the study
of the dependence of normalized moments of the
rapidity distributions on the size of the rapidity
bin [5]. Several modifications of the moments
method are suggested:

C,=<{nD/(n), q=1,2,..., (5)
C)={(n=<(n))"/<(n)", (6)
Cr=n(n—=1) - (n—qg+1)/{n), (7)

where g is the order of the normalized momenta
and ¢ ) means averaging over the rapidity bins.

Let us write down a more detailed expression
of a normalized moment,

1 M
("f!( M) = E E ”ﬂa/<nm>q1 (8)

m=1

where M is the number of equal rapidity bins
8,=A/M, A usually is the interval (-2, 2), ie.
6,=4/M, n,, is the number of hadrons falling
into the mth bin, and (n, ) is the average bin
population of events with multiplicity #.

Let us consider, following ref. [6], how the
normalized moments behave assuming first ab-
sence of correlation and then very strong correla-
tion. Consider the uniform bins distribution: n,,
=N/M, m=1, ... M. It is easily seen that for
all g, F,(M)=1. And if all the hadrons have
fallen into the same bin, #n,, = N for some m =r,
and n,, = 0 for the rest of m, then

C,(M)=M"1, (%)

i.e. at an extremal fluctuation the moments signif-
icantly increase with the number of bins. That is
why the moments method sometimes is called a

magnifier for exposure of non-uniformities.
Rewriting eq. (9) in a somewhat different form
and taking its logarithm gives

C(M)=(4/8,)"", (10)
InC,(M)=—-(q—1)In 8, +(g—1)In 4.
(11)

The moments logarithm depends linearly on the
logarithm of the bin size. A random quantity with
such a behaviour is called intermittent and the
factor multiplying the logarithm of the bin size is
called the index of intermittency. An intermittent
random quantity in a sense is the opposite of a
Gaussian one, for which a considerable deviation
from the average value is very improbable.

If even after averaging over all the events
(events with both the same and different multi-
plicity can be averaged), the scaling relation

In{(C,(M))=—A,Ind,+g, InA (12)

is satisfied, then the physical process investigated
is characterized by intermittency.

It is obvious that the experimental growth of
normalized moments, revealed in a wide energy
range of hadronic and leptonic collisions, is a new
main characteristic of multiparticle production,
which emphasizes the role of very short-range
correlations compared with the usual short-range
ones responsible for resonance production.

The first phenomenological mechanism de-
scribing the behaviour of factorial moments was
the hypothesis of the existence of two types of
sources: luminary, with a regular signal distribu-
tion, and turbulent, which is characterized by
chaotic bursts [7]. When colliding, the parton,
passing through and interacting in hadronic mat-
ter, enters high-density regions (narrow channels),
emits many particles, also passes through low-
density regions (wide channels) and uniformly
emits few particles. In such an interpretation, the
main attention is drawn to the very complicated
trajectory of the partons wandering in the
hadronic matter [8]. But we believe a much more
natural way to interpret the anomalous behaviour
of normalized moments is based on the hierarchy
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Fig. 1. Self-similar cascade decay of a particle with mass m.
On the rth step of the cascade development there are 2r
particles with mass m /a'.

production and on the notion of fractal (multi-
fractal) dimensionality, closely connected with
self-similarity.

Relations like (12) are a consequence of self-
similarity in the structure studied and give ground
to carry out a dimensionality analysis. A dimen-
sionality analysis means revealing in a 3N-dimen-
sional momentum space (or in a one-dimensional
rapidity space) lower-dimensional regions where
the events are grouped.

At present a number of simulations of quark—
gluon cascade development in hadronic matter
[9,10] are available. The updating of the LUND
program based on the idea of parton—hadron
duality [11,12] led to the realization that the
unusual behaviour of normalized moments is due
to the QCD cascade [12,13].

Before going on to the fractal analysis formal-
ism, we shall show how a non-integer fractal
dimensionality can arise in the simplest cascade
process of the decay of a particle of mass m [14]
(see fig. 1).

On cach self-similarity step of the cascade the
mass decreases by a factor of 1/, with a > 2.
(a = 2 if final-state particles are produced with
zero kinetic energy). On the rth step of the
cascade we have 2r particles with mass (1/a)" m.
The masses of the particles obtained as a result
of the cascade constitute the metric set 7.

Let us show that at the beginning of the cas-
cade process the topological dimension d.# =1,
and then later d+.7 < 1.

The topological dimension is equal to 7, if it
is possible to enter the finite open coverage of

the multiplicity <. + 1 into any finite open
coverage of the set #, and if there exist such
finite open coverages of # into which it is im-
possible to enter finite open coverages of multi-
plicity & + 2. The coverage multiplicity is the
maximum number of coverage elements contain-
ing common points of the set # [15]. For our
example, the possibility of entering coverages of
multiplicity 2 into any open coverage of # is a
necessary condition for the dimension to be equal
to unity.

The open intervals 1-1, 2-2,...,in fig. 1 form
the finite open coverage of the set #. As can be
seen from this figure, it is possible to enter the
coverage of multiplicity 2 for the incident particle
— it is enough to take somewhat shorter intervals
of coverage and they will also intersect, i.c. the
multiplicity is 2; and for the rth step of the
cascade it is impossible, since the intersecting
intervals cannot be embedded in the non-inter-
secting ones.

2. The technique of dimensionality analysis

Cascade processes, which are frequent in
high-energy physics, are due to some characteris-
tic dimensionality, But, in contrast to the ideal
self-similar cascades of geometric figures (c.g.
Serpinski’s carpet), in real physical systems there
are possible deviations from self-similarity and,
first of all, they contain not a single, but several
characteristic scales connected with some dimen-
sionality. The main goal of the dimensionality
analysis is to reveal these dimensionalities and to
relate them to the dynamic mechanisms responsi-
ble for their production.

There exist many different definitions of di-
mensionality. The following definition can easily
be generalized to a non-integer case,

y " In N(1)
B 11—]:?1 In {

; (13)

where N(/) is the coverage of the set under
investigation by open /-spheres.

It can be shown that dp <d and, if dp <dr,
then the object is called a fractal object, i.e.
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having a fractional dimensionality. Note that defi-
nition (13) has a purely geometric nature.

A set of events recorded in an experiment fill
momentum space very nonuniformly, reflecting
via the structure the dynamic mechanisms of par-
ticle production. That is why the event distribu-
tion over N(/) bins will be highly non-uniform
and this non-uniformity with a physical meaning
is not reflected at all.

To generalize the notion (13), it is necessary to
choose a universal measure fit to characterize the
momentum-space structure non-uniformities. The
subject of measure was discussed for dynamical
systems turning to chaos [16]. For such systems,
due to the necessity for transition from time
averages to spatial ones, invariance of measure is
required. There is no such problem for experi-
mental data analysis, since the object (a popula-
tion of points) can be considered as given, and
time is not an essential characteristic. Besides,
the object is compact: for any open coverage
there exists a finite subcoverage.

Let us consider the /-coverage of the compact.
In each bin N(/) determine probability (cellular)
measure (mass),

P(1) = [ do(x), (14)

where A is the volume of a bin with size [, p(x) is
a probability density function determined in the
whole space by means of some non-parametric
method, by the experimental data or by a Monte
Carlo simulation program [17].

From the point of view of experimental resolu-
tion it is important to use the cellular measure
P(I), though ! should not be so small that the
integral [ p(x) loses its meaning.

The basic approach to dimensionality analysis
lies in characterizing physical systems by the in-
variant probability measure singularities [18]. To
do this, let us determine the scaling of the mo-
ments of the random quantity p,(/) of order g at
scale I

N(D
Cu) =Lp()" = X p(D)"' ~1#@,

i=1

¢(q)=qd, ., (15)

where d,, are the Renyi dimensions (generalized
dimensions) determined for —o <g < 4+, At
q = — 1, the relation (15) determines the capacity
dimension dp=d,, at g =0 the information di-
mensionality d,, and at g =1 the correlation di-

mension d,.

If the fractal is uniform (geometric), then
pi=p=1/N,, N,=N(l), (16)
and
(1L/N)" " N~ 19, (17)

hence we obtain for all g,
In Ny~ —d, Inl, (18)

i.e. for uniform fractals the Renyi dimensions of
any order are the same and are equal to the
fractal dimension, and the scaling of the gth
order momentum is characterized by the index
qd,, which increases linearly with the momentum
order. And if the fractal is non-uniform, then all
d, are different (anomalous scaling) and the devi-
ation from the dimensionality can be character-
ized by:

d,— qd,. (19)

Thus, as in the case of normalized moments (6),
the Renyi dimensions can serve as quantitative
power indices of non-uniformity of both the ra-
pidity distribution and the hadron distribution in
momentum space.

The Renyi dimensions are defined as a slope
connecting some values of {/;} with the corre-
sponding values of {C (/,)} in a double-logarith-
mic scale. But the direct application of formula
(15) to Renyi dimension calculation is rather
time-consuming and, moreover, there are no in-
structions regarding the choice of the box-size
sequence {/;}. Algorithms based on necarest-
neighbour information (NN-algorithms) are much
more efficient than box-counting algorithms and
they introduce a natural scale, the sample-aver-
aged distance to NN,

ﬁk\ k=1129---3M‘1

where M is total number of events in the sample.
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Using the ergodic theorem one can make a
replacement [19,20],

N(D) M

Y p()"' = Y pi=0,

i=1 i=1

(20)

where p, is the probability to find the point of the
studied set not in the box of size [ but inside the
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hypersphere of radius /, centered at some other
point of the studied set and Q, is the total
number of g-tuples within this sphere.

For a R, sequence the scaling relation takes
the form

p~ REO, 1

In k

=

T

=

In F_'k

Fig. 2. The straight line slope determination, by which the correlation dimensionality of the Serpinski carpet is determined.
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For g = 1 (correlation dimension), the number
of g-tuples is simply equal to the number of
sample events within /-spheres, and the left-hand
side of (21) is equivalent to the mean number of
sample points inside a hypersphere with radius
equal to the average distance to the kth neigh-
bour, i.e. is equal to the number k, so
k ~ R (22)
Hence, the modified algorithm defines d, as a
slope of the k-dependence of R, in a double-
logarithmic scale.

Figure 2 shows such dependence used to de-
fine the correlation dimension of the Sterpinski
carpet. The dimension was determined by the
least-squares method through 25 points: The log-
arithm of the number of the nearest neighbour 1,

3, ... 49 is approximated by the logarithm of the
sample-averaged distance to the nearest neigh-
bour. Of course, the number of events must be
large enough; there is a definite relation between
the space dimensionality and the minimum num-
ber of events needed to draw consistent conclu-
sions.

By the ¢(g) dependence it is possible to clas-
sify different events of multiparticle production
[21], since a multifractal object can be considered
as an interwoven family of uniform fractals, each
obeying the scaling law with index d.

Note that the dimensionalities of df are not in
any way connected with the regions where singu-
larities of the probability measure arise, i.e. it is
impossible to recover the spatial structure of the
multifractal support from the d, spectrum. That
is why we believe that the local dimensionality
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Fig. 3. The 5th generation of the Serpinski carpet, 5000 points.
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introduced in ref. [22] may be useful in separating
the momentum-space regions where considerable
fluctuations of the invariant probability measure
are observed.

A description of the algorithm for the local
and global correlation dimension calculation is
presented in the next section, along with an inter-
esting relation of the fractal dimensions to the
intrinsic dimension, a notion developed also in the
mathematical theory of pattern recognition.

3. KNN estimation of probability density. Local
and global dimensionality.

Consider the KNN estimation of probability
density [23] which is a development of the well-
known histogram method,

pi(X;) = Mz (23)

where V,(x,) is the volume of a d-dimensional

Renyi dimension
as —
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for determination of the Renyi dimension, the higher the
nonuniformity.

hypersphere containing the k& nearest neighbours
to x,.

md/?

Vi(x:)= g =——
(X)) =V,Rg, Vy Fldz+1)

(24)

where R, is the distance to the kth nearest
neighbour of x; and I'(z) is the gamma function.
From eqgs. (23) and (24) we can readily obtain [24]

1
In Ry(x,) = I k+In[MV,p,(x,)] “He, 1s)

Equation (25) cannot be solved for d, since the
estimate of p(x,), as one can see from eq. (23),
depends on k. Therefore, let us average R, over
the whole sample, according to the distribution
function,

dyk—1
(CR ) '-'CR"I
(k) ’
where C = Mp(x) V,.

fe(R) = CdR"™! (26)
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In the approximation of small R and large M
we obtain the following equations:

— 1
InG, ,+In R, = Jln k + constant, (27)
kK'4r(k
(k) (28)

G S
ATk +17d)°

where R, is the sample-averaged distance to the
kth nearest neighbour and the constant is inde-
pendent of k.

The difference between this scaling equation
and those we obtained previously by a completely
different approach, consists in the so-called itera-
tive addition G ;, which is close to zero for all k
and d. Therefore, we solve this equation itera-
tively, first assuming G, , =0, and then, having
obtained d,, we calculate G, , and determine the
value of d,,,. We stop the iterations when d
becomes nearly constant.

Such verification of d-estimates is connected
with the averaging of the correlation integral.
The correlation integral (the number of sample
points inside a hypersphere of fixed radius) is a
random variable belonging to a binomial distribu-
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tion with parameter p(x) (the probability for the
sample point to fall within this hypersphere).

Notice that our estimate is global, i.e. the
whole sample is characterized by one number,
though local differences are possible. From this
point of view, local dimensionality is much more
interesting, since it allows us to detect local inho-
mogeneities corresponding to various dynamical
mechanisms.

Consider eq. (25) again. Apart from sample
averaging, there is also one more way to get a
linear equation for determining the dimension.
For this, one must choose the series {kj} such
that the density estimates are very close, and
hence the dependence of p.(x) on k can be
ignored. Following these chosen values {k;} and
the corresponding {R, (x;)}, one can estimate the
local dimension at the point x,.

4. The simulation study
The Renyi dimension was determined for the

samples generated by the algorithm for the Ser-
pinski carpet (fig. 3), the Henon map, and for
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of the Renyi dimensions, and to study the possi-
bilities of separating the regions with anomalous
structure. We also considered the quality of the
quasi-random-number generators, an important
aspect for many applications. For comparison of
the uniformity of the population of an N-dimen-
sional space by “random” numbers, we uscd
“quasi-random” numbers — LP-sieves, which uni-
formly fill an N-dimensional cube [25].

Figure 4 presents the Renyi dimensions of
order from 1 to 15 — the function ¢(q). The three
random-number generators being compared are:
RNDM, which has been widely used in the past
decade; RANECU, a generator recently recom-
mended by F. James [26], and NORIK, a matrix
generator designed in the Yerevan Physics Insti-
tute [27].

A.A. Chilingarian / Dimensionality analysis of multiparticle production

Sets of two-dimensional random quantities dis-
tributed in a square of side 1 were considered.
The slopes connecting the values of the moments
of the invariant probability measure (15) were
calculated through 70 points for distances equal
to the average distance to the nearest neighbours
with numbers from 6 to 75, the orders of dimen-
sions being chosen from 1 to 15. The sample sizes
were 1000 and 5000.

For a strictly periodic structure of LP-sieves,
all the Renyi dimensions are the same: ¢(g) = gd,
and the random-number generators show some
deviation from uniformity, which is due to the
limited sample sizes. The matrix generator re-
veals somewhat better results.

Figure 5 presents Renyi dimensions calculated
using different I_Ek—scquences (the sequences con-
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Fig. 9. A planar LP-sieve, 1024 nodes.
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sisted of average distances from 1 to 5, 1 to
25,...,1 to 75 nearest neighbours). The smaller
the range over which the dimension is deter-
mined, the more the random fluctuations and the
more the difference between the function ¢(q)
and the line y = gd,, which corresponds to com-
plete uniformity.

Figure 6 shows the histogram of the local
dimensions of a mixed sample consisting of a
mixture of 500 events of Serpinski’s carpet (d, =
1.9) and 500 events of Henon’s map (d, = 1.2).
Two peaks are clearly seen, which correspond to
two modes (the correlation dimensionality is
binned).

Unimodal distributions corresponding to data
of the same type are shown in figs. 7 and &.
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A quasi-periodical distribution was used to
“scan”’ the fractal support with the purpose of
determining the anomalous areas: the dimension-
ality was calculated in the nodes of the LP-sicve
(fig. 9). Figure 10 presents the results of scanning
a square of side 0.9 where the Serpinski carpet is
situated. For the sieve points falling into the
empty areas of the carpet the fractal dimension
turned out to be greater than 2.2, which allows
them to be reliably separated.

The quasi-random sequence itself also turned
out to be non-uniform on the boundaries of its
support shown in fig. 11.

The program code is written in Fortran 77 for
VAX and IBM-compatible computers operating
under VM. Some subroutines from the KNN
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Fig. 10. The results of scanning a Serpinski carpet to denote points where the local dimension is larger than 2.2.
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Fig. 11. The results of scanning a planar LP-sieve over the boundaries of its support; + denotes points where the local dimension is
larger than 2.2.

multivariate density-estimation package [17] are
used for NN distance calculations and g-tuple
counting. The calculations have been carried out
on an EC-1046 computer in the computation
center of the Yerevan Physics Institute.

5. Conclusion

To summarise, we have investigated a new
method of multiparticle data analysis which can
deal with the large number of particles produced
in modern colliders.

We have demonstrated how the Renyi dimen-
sions can be used as a quantitative measure to
outline possible inhomogenieties in a 3N-dimen-

sional momentum space or in the rapidity
(pscudo-rapidity) distributions.

We introduce a simple technique for Renyi
dimension calculation. A universal scale — sam-
ple-averaged distance to NN - is offered. A g-tu-
ple counting algorithm provides an evaluation of
Renyi dimensions in a sizeable range of values of
g. The KNN algorithm for calculating the correla-
tion dimension is much more suitable and precise
than box-counting algorithms.

By the local dimension distribution obtained
on fractal support we can judge the relative im-
portance of the different mechanisms taking part
in the creation of the data.

The application of these ideas to the analysis
of multiparticle production dynamics requires in-
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tensive Monte Carlo simulations and detailed
quantitative comparisons of simulated and exper-
imental data.
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