Установка МАКЕТ АНИ : отклик детекторов, регистрация и достоверность отбора полезных событий

 $Coxoян^{1*}$ C.O.

¹Отдел Космических Лучей, Ереванский Физический Институт, Ереван 375036, Армения

Введение

Основные результаты исследования широких атмосферных ливней (ШАЛ) на установке МАКЕТ АНИ [1], опубликованные в течение последних 2-3х лет, носили сугубо предварительный характер. Это было обусловлено недостоверным учетом функции отклика детекторов установки, вклада μ - ов, γ - квантов и т.д. по причине отсутствия к тому времени банка моделированных событий, а также отсутствием детальных исследований корреляций показаний индивидуальных детекторов с измеряемыми параметрами ливня.

Отсутствие банка М-К событий привело также к затруднению в определении эффективных площадей регистрации ШАЛ с различными N_e . Эти площади определялись эмпирически, а именно: прослеживалось сохранение формы N_e -спектров(интенсивности, наклоны до и после излома, а также положение точки излома) с увеличением допустимых расстояний оси ливня от центра установки. При этом определялись "эффективные"площади регистрации ливней для конкретных интервалов N_e .

Скудость банка экспериментальных данных не позволяла также исследовать зависимости "эффективных"площадей регистрации от возраста и зенитного угла падения ШАЛ[2], [3], [4].

Всё это привело к тому, что выработанные критерии отбора "полезных"событий не обеспечивали как эффективную отбраковку показаний индивидуальных("плохих") детекторов, так и достоверность построенных для различных интервалов зенитных углов θ спектров по числу частиц ШАЛ, являющихся основным предметом изучения исследовательской группы МАКЕТ АНИ.

К настоящему времени автором данной работы разработана методика определения эффективных площадей регистрации для установки МАКЕТ АНИ, которая в ближайшее время будет апробирована на банке моделированных посредством программы CORSIKA событий.

Приводимые же ниже исследования были проведены в условиях использованных до настоящего времени предварительных критериев отбора полезных событий, а целями работы являются:

- исследование функции пространственного распределения (ФПР) частиц ШАЛ при различных N_e ;

- исследование поведения "невязок" $\frac{\Delta \rho}{\rho_{NKG}} = \frac{\rho_i^{exp}(R) - \rho_{NKG}(R)}{\rho_{NKG}(R)}$

Здесь: і - номер детектора, R - расстояние от оси ливня, ρ_i^{exp} - плотность по числу частиц при данном R по показаниям і - ого детектора в каждом индивидуальном событии, $\rho_{NKG}(R)$ - плотность по числу частиц, ожидаемая на расстоянии R по NKG - фиту [5].

^{*}corresponding author e-mail: serg@crdlx5.yerphi.am

- проверка на зенитно - азимутальную изотропию при различных R для каждого детектора МАКЕТ АНИ;

- определение пределов области насыщения по числу частиц для каждого детектора;

- исследований корреляций показаний индивидуальных детектора с измеряемыми параметрами ШАЛ;

- выработка критериев отбора "полезных"событий.

1 Функции пространственного распределения

1.1 Условия построения и критерии отбора событий -Интервал зенитных углов $\theta = \theta^{\circ} \div 45^{\circ}$ равномерно бинируется по $\Delta sec\theta$ на 5 бинов ($\approx 60gcm^{-2}/бин$ вещества поглотителя), и ФПР строятся для каждого из этих бинов.

-Эффективные площади регистрации рассматриваются как функции N_e (аналогично процедуре построения N_e - спектров).

-ФПР строятся для каждого бина по N_e в интервале $5 \leq Log(N_e) \leq 8$ с шагом $\Delta Log(N_e) = 0.1$ (аналогично N_e - спектрам).

Отметим, что поисковыми параметрами ливня при NKG - фите являются: возраст s, координаты оси ливня X_o , Y_o , зенитный θ и азимутальный ϕ углы падения ШАЛ.

Предварительный отбор событий :

1. Возраст ливня:

a) 0.3 < s < 1.2.

б) Ошибки определения возраста по результатам фитирования NKG - функцией экспериментально измеряемых каждым детектором плотностей: $\Delta s < 0.2$.

2. Ошибки определения координат оси ливня при NKG - фите.

Если X_o, Y_o - координаты оси ливня, то : $|\Delta X_o| < 2.5m, |\Delta Y_o| < 2.5m.$

3. $\chi^2 < 6$ для NKG - фита.

4. Одночастичные фоновые спектры:

а)положение максимума для каждого детектора изменяется в пределах 4 < n_{max} < 8 кодов амплитудно-цифрового преобразователя(АЦП);

б)наклоны линейных (в логарифмическом масштабе) областей фоновых спектров $25 < n_{code} < 40$ изменяются в пределах $3.35 < \gamma < 3.65$.

5. Данные от детектора с максимальным показанием (в кодах АЦП) в NKG - фите данного события не участвуют.

1.2 Ф П Р и невязки $\frac{\Delta \rho}{\rho_{NKG}}$ Поскольку далее по тексту приводится множество иллюстраций касательно характеристик каждого детектора, то здесь необходимо вкратце описать нумерацию детекторов и их расположение в пределах установки. Отметим также, что в качестве детекторов электромагнитной компоненты ШАЛ используются пластические сцинтилляторы 2-х размеров: $1 \times 1m^2$ и $0.3 \times 0.3m^2$. Обозначим :

 $(|X_{max}|, |Y_{max}|)$ - максимальное расстояние детекторов данной группы от начала координат вдоль осей оХ и оУ соответственно.

Ковёр установки.

а) Большие детекторы $N1 \div 19$ - установлены вокруг ионизационного калориметра (ИК) $20 \times 40m^2$, расположенного в центре здания МАКЕТ-а (| $X_{max} \models 22m$, | $Y_{max} \models 9m$).

б) Большие детекторы N40 ÷ 49 - расположены вдоль оси о
X ИК (| X_{max} |= 17m, | Y_{max} |= 0m). в) Малые детекторы N50÷73 - установлены по периметру ИК. (| X_{max} |= 18m, | Y_{max} |= 2m).

Периферия.

г) Ближняя периферия - большие детектор
ы $N20\div 39$ - расположены вокруг здания МАКЕТ-а

 $(\mid X_{max} \mid = 50m, \mid Y_{max} \mid = 33m).$

д)Дальняя периферия 1 - большие детекторы $N74 \div 77$ - расположены на крыше гостиницы станции (| $X_{max} \models 67m$, | $Y_{max} \models 12m$).

е)Дальняя периферия 2 - большие детекторы $N78 \div 92$ - расположены на крыше "Dark house" (| $X_{max} \models 91m$, | $Y_{max} \models 60m$).

В свете исследуемых в данной работе задач очень полезной является информация о предельных расстояниях от осей ливней (R_{min}, R_{max}) , "просматриваемых" ковром и каждой периферией в отдельности, приведенная в Табл 1. Как видно из этой таблицы, значения R_{min} и R_{max} для ковра и ближней периферии не изменяются с зенитным углом θ и расстояния от осей ливней для них находятся в пределах $0m \leq R \leq 55m$ для бо

	Табл	ица 1:		
	$0^{o} \div 22.6^{o}$		$41.3^{\circ} \div 45^{\circ}$	
	R_{min}	R_{max}	R_{min}	F
9	0	45	0	
72	Ο	45	0	

- · uei	r emin	- •max	<i>remin</i>	- •max
$1 \div 19$	0	45	0	45
$40 \div 73$	0	45	0	40
$74 \div 77$	40	90	30	90
$78 \div 92$	70	130	55	125
$20 \div 37$	0	55	0	55

 $R \leq 45m$ для ковра и $0m \leq R \leq 55m$ для ближней периферии.

Дальние же периферии уже чувствительны к θ : с ростом углов R_{min} падет на \approx 10 \div 15m.

На Рис.1 показаны ФПР(умноженные на R^2), построенные для 30 - ти интервалов N_e . Ширина бина по R равна 5 m. События с $R \leq 2m$ исключены.

Кривые соответствуют NKG - фитам, полученным использованием экспериментальных $s(N_e)$ - зависимостей.

Из Рис.1 очевидны следующие особенности в поведении построенных ФПР:

1. В области $5 < Log(N_e) \le 5.4$ наблюдается систематическая заниженность экспериментальных $\rho(R)$ по сравнению с NKG - фитом для $15m \le R \le 75m$.

2. В области R > 75m и 5.3 < $Log(N_e) \le 6.4$ экспериментальные $\rho(R)$ превышают NKG - фит.

3. В области 35
 $m \leq R \leq 50m$ наблюдается резкое изменение формы экспериментальных ФПР при все
х $N_e.$

4. При $Log(N_e) > 6.0$ и R < 50m экспериментальные $\rho(R)$ существенно превышают NKG - фит.

С целью понимания возможных причин такого "странного" поведения ФПР были исследованы невязки $\frac{\Delta \rho}{\rho_{NKG}}$ как функции от R для тех же интервалов N_e , и результаты показаны на Рис. 2.

Из рисунка очевидно наличие особенности в поведении $\frac{\Delta \rho}{\rho_{NKG}}$ в области $35m \leq R \leq 50m$ практически для всех N_e . Отметим, что величина $\frac{\Delta \rho}{\rho_{NKG}}$ является одновременно и систематической ошибкой определения размера ливня (при условии независимости этой величины от R), и поэтому выявление причин вышеуказанных особенностей в поведении ФПР крайне важно.

Из рис. 2 видно также, что при $5 < Log(N_e) \le 5.4$ и $0m \le R \le 100m$ наблюдается слабый рост невязок с R(от 0 до 0.1), а при $Log(N_e) > 5.7$ и $R < 70m \frac{\Delta \rho}{\rho_{NKG}}$ падает с выходом на плато в области $75m \le R \le 100m$.

При R > 100m (дальние периферии 1 и 2) и всех N_e невязки резко растут. Детальный анализ данных от периферийных пунктов регистрации приводится далее по тексту.

Как показали исследования, ФПР, построенные только по данным малых детектров, систематически занижены по сравнению с $\rho(R)$ по данным больших детекторов (на 10 ÷ 15% при 5 < $Log(N_e) \leq 6$), причем малые детекторы регистрируют ливни только на расстояниях от оси R < 45m (см. Табл.1). По мнению автора, это и является основной причиной особенности в поведении как ФПР, так и невязок по плотностям, наблюдаемым именно вокруг точки R = 45m. Расстояния R > 45m находятся вне пределов досягаемости малых детекторов, и потому превышение плотностей в этой области ожидаемо, и точка $R \approx 45m$ является разрывной для ФПР.

Попытка игнорирования данных от малых детекторов в процедурах построения $\Phi \Pi P$ и расчета невязок ситуацию существенно не улучшила, поскольку при обработке "нулевого" банка данные от малых детекторов "apriori" участвовали в процессе определения параметров ливня, а значит и $s(N_e)$ - зависимости, используемой далее при NKG - фите.

Вторая возможная причина особенности точки R = 45m: из Табл. 1 видно, что "зона" $40m \le R \le 55m$ - эта та зона, где прекращается регистрация ливней ковром и ближней периферией, и одновременно "включаются" дальние периферии 1 и 2. Возможно, что именно здесь эффективность регистрации ливней низка. Ответ на это дадут только исследования по эффективностям регистрации на М - К моделированных данных.

В настоящее время группой МАКЕТ АНИ проводится детальный анализ процедуры обработки данных малых детекторов с целью выявления причин их аномального поведения.

На Рис. 3 и 4 показаны зависимости невязок плотностей от R по данным каждого детектора установки для интервала зенитных углов $\theta = 0^{\circ} \div 22.6^{\circ}$.

Из рис. видно, что для больших детекторов ковра и ближней периферии, как и ожидалось, невязки практически не зависят от R и изменяются в пределах $-0.2 \div 0.2$ (за исключением детектора N 33). Для малых же детекторов при R > 20m наблюдается резкое падение $\frac{\Delta \rho}{\rho_{NKG}}$ от значения ≈ 0.2 при R = 20m до ≈ -0.8 при R = 40m, что опять подтверждает "странность" в поведении малых детекторов.

По данным периферии MAKET-а : при R>100m значения $\frac{\Delta \rho}{\rho_{NKG}}$ резко растут.

На Рис. 5÷8 показаны корреляции невязок с размером ливня для каждого детектора, построенные следующим образом.

Для каждого фиксированного N_e строятся распределения невязок(для всех значений R) по показаниям каждого детектора, и затем определяются средние значения этих распределений и показанные на этих рисунках.

Как видно из этих рисунков, для ковровых детекторов невязки изменяются в пределах $-0.3 < \frac{\Delta \rho}{\rho_{NKG}} < 0.3$ в области размеров ШАЛ $5 < Log(N_e) \leq 7$. Хуже ведёт себя ближняя периферия : $-0.4 < \frac{\Delta \rho}{\rho_{NKG}} < 0.8$, причем наихудшие показатели у детекторов 24, 28, 34, 37. Странно также резкое падение невязок с N_e для детекторов 31 и 43. Идеальным кажется поведение невязок для дальней периферии $-0.1 < \frac{\Delta \rho}{\rho_{NKG}} < 0.1$. Но здесь следует помнить, что в этих пунктах регистрации наблюдаются в основном низкие плотности, эффективно регистрируемые практически каждым детектором.

По данным этих рисунков хорошо просматриваются также области насыщения для каждого детектора, проявляющиеся в основном при ливнях с числом частиц $Log(N_e) > 7$, где наблюдается резкое возрастание невязок. В этом смысле детектор N33 можно охарактеризовать как "плохой": для него область насыщения начинается при $Log(N_e) > 6.5$.

С целью более детального исследования области насыщения исследовались также корреляции средних значений плотностей по показаниям каждого детектора с размером ливня, показанные на Рис. 9 ÷ 11 для интервала $\theta = 0^{\circ} \div 22.6^{\circ}$. Как видно из этих рисунков, для большинства детекторов наблюдается степенной рост $< \rho(N_e) > -$ зависимости вплоть $Log(N_e) = 7.5$, а диапазон максимальных измеряемых плотностей изменяется от $\rho_{max} = 400$ для периферии 2 (при $Log(N_e) = 7.8$) до $\rho_{max} \approx 20000$ для ковровых детекторов.

Обращают на себя внимание два детектора ближней периферии. Это детекторы N 33 и 37, у которых область насыщения достигается очень рано - при $Log(N_e) > 6.5$.

В дальнейшем, при построении спектров по числу частиц в ШАЛ, предполагается учет составляемой ныне карты насыщения по всем детекторам МАКЕТ АНИ.

2 Ошибки определения расстояния от оси ливня

Представленные в данной работе результаты в основном соотносятся с параметром R - расстоянием от оси ливня, и поэтому важно исследовать ошибки их определения ΔR при различных зенитных углах падения.

Ожидаемые закономерности : ΔR должны возрастать как с удалением к периферии, так и с θ и ϕ , роль которых сильно возрастает при $\theta > 35^{\circ}$.

На Рис.12 ÷ 15 показаны корреляции ΔR с R для каждого детектора в двух крайних интервалах зенитных углов : $0 < \theta \leq 22.6^{\circ}$ и 41.3 $< \theta \leq 45^{\circ}$.

Как видно из Рис. 12, 13 при "вертикальных" событиях для детекторов ковра и ближней периферии $\Delta R \leq 2m$, для дальней периферии 1 - $\Delta R \leq 6m$, и периферии 2 - $\Delta R < 10m$. В ближней периферии наихудшие показатели у детекторов 30 и 33 : $\Delta R \approx 4m$.

Как видно из Рис. 14, 15 при больших зенитных углах значения ΔR резко возрастают. Ковёр: при $0m < R < 35m \ 5m < \Delta R < 10m$.

Ближняя периферия : при $0m \le R \le 35m \ 10m \le \Delta R \le 20m$.

Для детекторов же дальней периферии ΔR вне пределов разумных значений, и в этом аспекте использование информации от дальней периферии при больших θ представляется нецелесообразным.

В любом случае эти исследования необходимо провести для каждого из пяти интервалов θ .

2.1 Изотропия по зенитным и азимутальным углам Были исследованы корреляции между θ и R, ϕ и R, а также ошибок определения углов $\Delta \theta$, $\Delta \phi$ с R для каждого детектора, показанные на Рис.16 ÷ 23 и построенные следующим образом:

а) фиксируется R;

б) запоминаются значения θ . $\Delta \theta$, ϕ . $\Delta \phi$ в каждом индивидуальном событии для детекторов, попавших в данный бин по R;

в)эти значения углов усредняются;

г)меняется бин по R, и пункты б ÷ г повторяются заново.

Как видно из Рис.16 и 17, для "вертикальных" событий $\langle \theta \rangle \approx 14.5^{\circ}$ для всех R, за исключением периферийных пунктов, где наблюдаются завышенные значения θ в области

 $40m \le R \le 50m$ для периферии 1 и в области $65m \le R \le 80m$ для периферии 2.

Ошибки же составляют $\Delta \theta \approx 1.5^{\circ}$ для "вертикальных"событий и возрастают до $\Delta \theta \approx 2^{\circ}$ при $\theta > 41^{\circ}$ (см. Рис.18, 19) Поскольку ширина предпоследнего(4 - ого) интервала θ составляет $\approx 4.5^{\circ}$, а последнего - всего $\approx 3.7^{\circ}$, то построение ФПР и спектров по N_e в этих угловых интервалах, ширина которых соразмерима с $\Delta \theta$, представляется некорректным, т.к. резко возрастает роль "перекачек" совытий в соседние угловые интервалы.

Есть два выхода из этой ситуации:

1) Интервал $\theta = \theta^{\circ} \div 45^{\circ}$ можно разбить не на 5, а на 4 бина. Тогда соответствующее каждому бину количество поглотителя возрастёт (а значит и возрастает роль флуктуаций исследуемых параметров ШАЛ) и будет составлять $\approx 75gcm^{-2}$ против бывших $\approx 60gcm^{-2}$. Этот вариант разбиения нежелателен еще и потому, что теряется точка каскадной кривой в области экспоненциального поглощения частиц ШАЛ. Это не только ухудшит точность определения параметров, описывающих каскадную кривую, но также не позволит определить пробеги поглощения по числу частиц, поскольку глубины атмосферы X < 820 gcm-2 соответствуют области максимума каскадной кривой, и в область экспоненциального поглощения попадут всего 2 точки.

2)Неравномерное бинирование по $\Delta sec\theta$ такое, чтобы ширина каждого бина по θ была бы не меньше $5^{o} - 6^{o}$.

Существенно различно поведение азимутальных углов с R : для вертикальных ливней $<\phi>\approx 180^{\circ}$ при $\Delta\phi\approx 8^{\circ}$ (см. Рис.20, 21). Для больших же $\theta>41^{\circ}$ (см. Рис.22, 23) получаем ошибки $\Delta\phi\approx 2^{\circ}$, за исключением дальней периферии, где наблюдается резкий рост $<\phi>\approx 240^{\circ}$. Это ещё раз говорит в пользу отказа от дальней периферии при больших зенитных углах падения ШАЛ.

По данным Рис. 20, 21 "плохими" можно охарактеризовать детекторы NN 20,24,27,34,37. Плохие показатели по этим детекторам подтверждаются также и по $\Delta R(R)$ и $\frac{\Delta \rho}{\rho_{NKG}}(N_e)$ - корреляциям, а результаты показаны на Рис. 24.

В итоге, по результатам всего изложенного в работе анализа экспериментальных данных "плохими"детекторами можно назвать следующие детекторы : 20, 24, 27, 33, 34, 37, 43. С целью "спасения"полезной информации от этих детекторов необходимо выявление и исключение из анализа только статистики за период "плохой"работы этих детекторов.

3 ВЫВОДЫ

1. По данным МАКЕТ АНИ наблюдается существенное расхождение экспериментальных плотностей по числу частиц от NKG - фита практически при всех N_e и R.

2. В области расстоянийй 35*m* ≤ *R* ≤ 55*m* наблюдается резкое возрастание ошибок определения плотностей по числу частиц (а значит и *N_e*), а также самих R. C целью выявления причин этого необходимо заново проверить и , возможно, откорректировать процедуру обработки данных от малых детекторов установки.

3. При зенитных углах $\theta > 35^{\circ}$ использование информации от дальних периферийных пунктов в процедурах построения ФПР и спектров по числу частиц ШАЛ недопустимо по причине больших ошибок определения расстояния от оси ливня, а также сильно завышенных значений (на $\approx 40^{\circ} - 50^{\circ}$) азимутальных углов.

4. С целью корректного учета перечисленных выше недостатков используемой на сегодняшний день процедуры отбора полезных событий в ближайшее время необходимо определение посредством М - К моделированных событий эффективных площадей регистрации как функций от размера, возраста и зенитного угла падения ливня.

5. Изложенный в работе анализ данных каждого детектора позволил выявить детекторы, плохо работавшие в период набора статистики, с целью отбраковки этих данных при повторной обработке нулевого банка (итеративный метод обработки).

6. По причине больших ошибок определения зенитных углов ($\approx 2^{\circ}$ при $\theta > 35^{\circ}$) равномерное бинирование интервала $\theta^{\circ} \div 45^{\circ}$ на 5 бинов при построении ФПР и N_e - спектров недопустимо. Это неизбежно приведет к большим перекачкам событий в 2 - х последних бинах по θ в разные угловые интервалы.

Предлагается неравномерное бинирование по θ так, чтобы ширина бина былы бы не меньше 5^o-6^o .

Список литературы

- [1] В.В. Авакян и др., ЯФ, 56 (1993) 182
- [2] S. Hayakawa, Cosmic Ray Physics, Interscience Monographs and Texts in Physics and Astronomy, V. 22, Wiley-Interscience, 1969
- [3] G.B. Khristiansen, G. Kulikov, J. Fomin, Cosmic Rays of Superhigh Energies, Verlag Thiemig, Munchen, 1979
- [4] M. Nagano et al., Journ. Phys. G: Nucl. Phys. 10 (1984) L235;
- [5] K.Greisen, Progress in Cosmic Ray Physics 3, North Holland Publ. (1956)
 К.Kamata, J.Nishimura Progr. Theor. Phys., Suppl. 6(1958)93. В.С.Асейкин и др. Труды ФИАН, 109(1979)3.

4 БЛАГОДАРНОСТИ

Сердечно благодарю Зав. ОКЛ ЕрФИ Чилингаряна А.А. за проявленный интерес и постоянное внимание к работе и моих коллег Мелкумян Л.Г., Овсепяна Г.Г., КарагёзянаГ.В. и Варданяна А. за многочисленные и плодотворные дискуссии.

Рис. 1:

Рис. 2:

Рис. 3:

Рис. 4:

Рис. 5:

Рис. 6:

Рис. 7:

Рис. 8:

Рис. 9:

Рис. 10:

Рис. 11:

Рис. 12:

Рис. 13:

Рис. 14:

Рис. 15:

Рис. 16:

Рис. 17:

Рис. 18:

Рис. 19:

Рис. 20:

Рис. 21:

Рис. 22:

Рис. 23:

Рис. 24: