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Abstract

The experiment KASCADE observes simultaneously the electron—photon, muon, and hadron components of high-
energy extensive air showers (EAS). The analysis of EAS observables for an estimate of energy and mass of the primary
particle invokes extensive Monte Carlo simulations of the EAS development for preparing reference patterns. The
present studies utilize the air shower simulation code corsikA with the hadronic interaction models VENUS, QGSJet
and Sibyll, including simulations of the detector response and efficiency. By applying non-parametric techniques the
measured data have been analyzed in an event-by-event mode and the mass and energy of the EAS inducing particles
are reconstructed. Special emphasis is given to methodical limitations and the dependence of the results on the hadronic
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interaction model used. The results obtained from KASCADE data reproduce the knee in the primary spectrum, but
reveal a strong model dependence. Owing to the systematic uncertainties introduced by the hadronic interaction models
no strong change of chemical composition can be claimed in the energy range around the knee. © 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The basic astrophysical questions in high-
energy cosmic rays (CR) relate to the sources, the
acceleration mechanisms and the propagation of
CR through space. In particular, the observation
of the change of the power law slope (the knee [1])
of the all-particle spectrum at an energy of a few
times 105 eV has induced considerable interest
and experimental activities. Nevertheless, despite
of many conjectures and attempts, the origin of the
knee phenomenon has not yet been convincingly
explained.

Due to the rapidly falling intensity and low
fluxes, cosmic rays of energies above 10" eV can
be studied only indirectly by observations of ex-
tensive air showers (EAS) which are produced by
successive interactions of the cosmic particles with
nuclei of the Earth’s atmosphere. EAS develop in
the atmosphere as avalanche processes in three
different main components: the most numerous
electromagnetic (electron—photon) component, the
muon component and the hadronic component.
The properties of EAS are usually measured with
large ground-based detector arrays. In most ex-
periments only one or two components are stud-
ied. The KASCADE experiment [2,3] studies all
three main components simultancously and a large
number of shower parameters are registered for
each event. Their analysis to determine the prop-
erties of the primary particle are obscured by the
considerable fluctuations of EAS development.

The analysis of the EAS variables to deduce the
properties of the primary particle relies on the
comparison with Monte Carlo (MC) simulations
of the shower development (see Fig. 1), including
the detector response. Usually only one or two
EAS parameters are measured and various sim-
plified procedures are used to describe the relation

between the observed EAS properties and the
nature and energy of the primary particle. The
simplification often implies the use of parameteri-
zations of the average behavior, which may bias
the results and limit the accuracy because fluctua-
tions are neglected or not properly accounted
for. For the analysis of multivariate parameter
distributions and accounting for fluctuations more
sophisticated methods are needed. The decades-
old Bayesian methods and the neural network
approaches, currently in vogue, meet these neces-
sities. The methods facilitate an event-by-event
analysis.

In the present paper we report on an investi-
gation of the energy spectrum and mass compo-
sition of cosmic rays in the energy range of
10'5-10' eV, based on the analysis of 700,000 EAS
events. A subset of approximately 8000 showers
with cores near the center of the hadron calori-
meter yields information on all three components
and has been studied in more detail. Following
the analysis scheme shown in Fig. 1, the simu-
lated showers calculated with the simulation pro-
gram CORSIKA [4] have been convoluted with the
apparatus response using the GEANT code [5]. Non-
parametric procedures [6] yield not only an esti-
mate of the primary energy and mass composition,
but they also allow to specify the uncertainty of
the results in a quantitative way. In addition,
we specify the dependence of the results on the
hadronic interaction models. The necessity to in-
voke such models in an energy range, extrapolating
the knowledge about high-energy hadronic inter-
actions beyond the experimental limits of accele-
rator experiments, implies a model dependence of
the results on the energy spectrum and mass com-
position. Quantifying this model dependence is one
of the objectives of the present paper. The model
dependence is illustrated by using two different
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Fig. 1. Twofold way of the EAS analysis procedure.

interaction models for the analysis. The depen-
dence implies not only the degree to which a par-
ticular EAS observable is correlated to energy and
mass of the primary particle, it shows also how
sensitively different EAS observables reveal pri-
mary mass. As an example, the mass composition
depends on the particular set of observables being
considered simultaneously in the analysis if the

model is inconsistent with the data in all internal
correlations.

It should be stressed that the present study
emphasizes the methodical aspects of how to infer
energy spectrum and mass composition of CR
rather than providing a final answer. This would
require improved statistical accuracy both in experi-
ment and simulation and, first of all, a reduction
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of systematic uncertainties due to the incomplete
knowledge of high energy interactions. Never-
theless, our findings on spectrum and mass com-
position are compatible within the methodical
accuracy to the results of other experiments.

2. The KASCADE experiment

The detector installation of the experiment
KASCADE (KArlsruhe Shower Core and Array
DEtector) [2,3] is located on the site of the Fors-
chungszentrum Karlsruhe, Germany (8°E, 49°N;
110 m a.s.l.). The three major components of the
detector system (Fig. 2) are

e an array of scintillation detectors,
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e a central detector: an arrangement of several dif-
ferent detector components, basically a hadron
iron sampling calorimeter using liquid ioniza-
tion chambers and

e a muon tracking detector (MTD) using limited
streamer tubes.

The array covers an area of about 200 x 200 m?
and consists of 252 detector stations. These are
organized in 16 clusters and placed on a square
grid of 13 m separation. The detector stations
contain liquid scintillation counters (e/y detectors)
of 0.79 m? area each and plastic scintillators of
0.81 m* each (u detectors; E"™ = 230 MeV), the
latter covered by a shielding of 10 cm lead and
4 cm steel. The inner four clusters (60 stations)
contain four e/y detectors per station but no p
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Fig. 2. Schematic layout of the KASCADE experiment.
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detectors while the outer 12 clusters (192 stations)
have two e/y detectors and four p detectors per
station. The reconstruction of the EAS data mea-
sured with the array provides the basic informa-
tion about lateral distributions and total intensities
of the electron—photon (shower size N.) and muon
components (V,; see Section 4), the location of the
EAS core and the direction of incidence.

The layout and performance of the central de-
tector are described in Ref. [7]. The finely seg-
mented hadron calorimeter is the main part of in
the central detector system. It consists of a 20 x
16 m?> stack of about 4000 t of iron with eight
horizontal gaps. The calorimeter thickness corre-
sponds to 11 interaction lengths /; for vertical
hadrons. The detectors, measuring the energy de-
posit of the traversing charged particles, are ioni-
zation chambers filled with the room temperature
liquids tetramethyl-silane (TMS) or tetramethyl-
pentane (TMP), inserted into the gaps of the iron
stack and read out by 40,000 electronic channels.
From their signals the impact point, the direction
and the energies of individual hadrons are recon-
structed. In particular, the number of EAS hadrons
with energies larger than 100 GeV (Nf>190 GV ' the
energy of the most energetic hadron observed in
the shower (EP™) and the energy sum of all re-
constructed hadrons (> Ej,) are deduced as shower
observables (see Section 4).

A layer of 456 scintillation detectors, each with
a size of 0.45 m?, is mounted in the third gap at
a depth of 2.2 A;. It is used for triggering the cen-
tral detector system, for muon detection (with a
threshold of Ehhres =490 MeV), and to determine
arrival time distributions [8].

In the basement of the central building, below
the iron stack and 77 cm of concrete, two layers of
multi-wire proportional chambers (MWPCs) are
arranged as a tracking hodoscope, covering an

area of 122 m? [9]. The MWPCs register muons
with an energy threshold E[™* =24 GeV and
provide the observable N: , 1.e. number of recon-
structed muons in the MWPCs. Due to the good
position resolution, the MWPCs register also the
spatial distribution of the high-energy muons to-
gether with traversing secondaries produced in the
absorber by high-energetic hadrons, whose pattern
has been shown to carry valuable information
about the mass of the primary particle [10], ex-
pressed by particular parameters (D_g, Dg) in terms
of a fractal moment analysis (see Section 4). In-
formation on specific detector details is compiled
in Table 1.

3. Simulations

The simulations of the EAS development, along
the requirements of the analysis scheme of Fig. 1,
have used the air shower simulation program
CORSIKA (ver. 5.62) [4]. The code incorporates
several options of high-energy interaction models
and is continuously under improvement. In par-
ticular, we consider the latest versions of VENUS
[11], QGSJet [12] and Sibyll (ver. 1.6) [13]. VENUS
and QGSJet are models based on the Gribov-
Regge theory, and extrapolate the interaction
features in a well defined way into energy regions
which are far beyond energies available by accel-
erators, and especially into the extreme forward
direction. Sibyll is a minijet model used as a had-
ronic interaction generator in the mocca [14] and
the AIREsS codes [15]. We use it here only for
demonstration purposes. For the low-energy in-
teractions CORSIKA includes the GHEISHA code
[16]. The influence of the earth magnetic field
on charged particle propagation is taken into

Table 1
KASCADE detector components used in the present analysis
Detector Total area (m?) Threshold, Ey;, Observables
Array e/y 490 5 MeV N,
Array p 622 230 MeV x sec Ny, N
MWPCs 122 2.4 GeV x secl N:, D_¢, Ds
Calorimeter 320 50 GeV NE>100 Gev | pmax S~ pr
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account. As density profile of the atmosphere the
US standard atmosphere is chosen [4].

Samples of at least 2000 proton and iron-
induced showers have been simulated with all three
models. Additionally for VENUS and QGSlJet the
intermediate mass primaries He, O and Si have
been simulated. The energy distribution follows a
weighted power law with a spectral index of —2.7
in the energy range of 10'-3.16 x 10'® eV, calcu-
lated in eight intervals. The zenith angles are dis-
tributed in the range [13°, 22°]. The centers of the
showers are spread uniformly over an area which
exceeds the surface of the hadron calorimeter by
2 m on each side. In addition, roughly the same
number of simulated events with the centers of the
showers within the array are used. The signals
observed in individual detectors are determined by
tracking all secondary particles down to observa-
tion level and passing them through a detector
response simulation program based on the GEANT
package [5].

4. Event reconstruction and selection

The reconstruction of the EAS observables
which is described in detail in preceding publica-
tions of the KASCADE collaboration [10,17-22],
applies an iterative procedure for reconstruct-
ing the shower size parameters. In a first step the
shower core location is determined by a center-
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of-gravity technique from the energy deposit sig-
nals of all e/y counters, and the shower direction is
estimated by a simple plane fit using the timing
information of the array detectors. In addition, as
rough first approximations, the electron size N,
and muon size N, are estimated from summation
of detector signals, taking into account the actual
shower core position on the grid. These parameter
values are initial values for the further recon-
struction steps. In the second step, the shower di-
rection is determined by fitting a conical shape of
the shower disc to the arrival times of the charged
particle component, registered with the e/y coun-
ters. The lateral distributions and their shape
parameters are estimated, and N;r and N, are de-
termined.

The muon size N, is the muon content within a
range of distances from the shower core between
40 and 200 m, which is the range accessible to the
KASCADE experiment (the so-called truncated
muon number) [21,22]. The lower limit is chosen to
exclude contributions of the electromagnetic and
hadronic punch-through near the center of the
showers. The upper limit corresponds to the geo-
metrical acceptance of the KASCADE layout. Fig.
3 displays the variation of N;f and N, versus the
primary energy E, as inferred from EAS simula-
tions. Due to various serendipitous features of the
KASCADE layout logN," proves to be nearly
proportional to log £ and turns out to be almost
independent of primary mass (Fig. 3, left). This is
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Fig. 3. The mean values of the truncated muon number N\" and electron number N, vs. primary energy as inferred on basis of the
indicated interaction models. For sake of clarity only QGSJet predictions are fitted by a linear function in log-log scale, in order to
emphasize the much more pronounced mass dependence of the shower size N..
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Fig. 4. The variation of the mean values of the electron shower size (left) and number of reconstructed hadrons N> GV (right) with
N The predictions of different models for proton and iron induced showers are compared with results of the measurements.

in contrast to the electron size N,, which exhibits a
strong mass dependence for fixed N\ as shown in
Fig. 4 (right).

Contributions to the detector signals of other
particles than electrons and muons are eliminated
by applying a lateral energy correction function to
appropriate particle densities, which are fitted with
a likelihood function to the Nishimura—Kamata—
Greisen (NKG) formula [23,24]. Values of the ra-
dius parameters of 89 and 420 m for electrons and
muons, respectively, are used [17]. For showers
whose cores are located within 91 m from the array
center °, the reconstruction uncertainty is about
2 m for the location of the shower center, 0.5° for
the angle of incidence, and less than 10% and 20%
for N. and N:f values, respectively, at primary en-
ergies larger than 10" eV.

Muon tracks observed with the MWPCs, re-
constructed from pairs of hits in the two MWPC
layers (vertically separated by 38 cm [10]), are
summed up to obtain N:‘ . A limit for the recon-
structed angle of +15° in zenith and +45° in azi-
muth with respect to the shower axis determined
from the array is imposed (the azimuth cut is not
applied for showers with zenith angles of <10°).
The analysis of the number and spatial distribu-
tion of the muons and of produced secondaries in
terms of two generalized multi-fractal dimensions

5 This number 91 m results from the extension and the grid
spacing of the detector array.

D_¢ and Dg is discussed in Ref. [10]. These pa-
rameters characterize the spatial distribution of
muons and high-energy (punch-through) hadrons
as well as the degree of fluctuations of particles in
the shower core.

The reconstruction of the hadronic shower
variables applies appropriate pattern recognition
algorithms [18-20]. Energy clusters found in dif-
ferent detector layers are traced from lower layers
to the topmost one to form a particle track. Ad-
ditionally, the angle of incidence of the track can
be deduced by the same procedure starting at
lower layers, patterns of cascades have to form
clusters from the remaining energy bunching up
to showers according to the already determined
direction. Furthermore, signals in the first layer
from the top are not used for energy determina-
tion, because their electromagnetic punch-through
distorts the hadron signals. The signals, weighted
by the overlying absorber thickness are summed
up and converted to hadron energies [7]. Similar to
the shower size N, the reconstructed number of
hadrons (NE>190 GV exhibits a strong mass de-
pendence for fixed N, as well (Fig. 4, right).

For the investigation of the primary energy
spectrum and mass composition, as well as of
particular correlations of observables, two sets of
data are compiled. One set — further referred to as
selection I — uses the information of electrons and
muons from the array stations only. It allows
analysis the data with good statistical accuracy,
but includes only little information provided by
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the central detector. A second data set — hence-
forth referred to as selection II — includes observ-
ables measured in the central detector, but this
data sample comprises only a small amount of
registered showers. Selection I comprises 720,000
EAS events, accumulated in 226 days, with pri-
mary energies larger than £~ 5 x 10" eV and
with a maximum core distance from the center of
the array of 91 m and with angles of incidence in
the range of [13°,22°]. Selection II comprises ap-
proximately 8000 high-energy, central showers
selected by cuts on N;'(log N > 3.5), on the core
location (Reoe < 5 m from the center of the central
detector), with at least one reconstructed hadron
of an energy above 100 GeV and 10 muons ob-
served in the MWPCs.

5. Non-parametric analyses

The present analysis of mass composition and
energy spectrum avoids the bias inherent in para-
metric procedures and is performed for individual
events by use of multivariate non-parametric
Bayesian and neural network decision methods. In
this way we are able to specify, in a transparent
and coherent way, how conclusive and trustworthy
our results are, as expressed by true classification
and misclassification matrices of the results. A
brief outline and more details of the applied
methods are given in Appendix A and in Ref. [25].

The combination of the total muon content
N, and the shower size N. has been shown to
be sensitive to primary mass and is applied in
numerous experimental studies, using suitable
parameterizations of the predicted logN,/logN.
relation with the primary mass. However, as in-
dicated above, the total muon content N,, al-
though displaying some dependence on primary
mass, is a quantity not easily accessible experi-
mentally without additional assumptions about
the shape of the lateral muon density distribution
at large distances from the shower core. Therefore,
we prefer to consider the truncated muon number
N[, which — on average — proves to be nearly in-
dependent from primary mass (see Fig. 3), but it is,
on the other hand, a rather sensitive energy iden-
tifier. Thus, at fixed N:, the information about the

mass is essentially provided by the shower size N,
[21,22]. In cases of other EAS observables mass
and energy sensitivities are, in general, less well
marked, and in principle, each shower variable
carries information simultaneously on mass and
energy in a way which is additionally affected by
the considerable fluctuations of the shower devel-
opment. The most sensitive EAS observables, N,
and N, display the smallest intrinsic and sampling
fluctuations.

5.1. Mass composition

Due to the limited number of simulated EAS
and the correspondingly limited statistical accu-
racy it is hardly reasonable to use the full set of
observables simultaneously to achieve a reliable
result about mass composition (curse of dimen-
sionality condition; see Appendix A). Hence we
consider simultaneously only a few observables.

Each simulated or measured event is represented
by an observation vector x = (Ne, N, .. .) of the n
observables. Applying the technique described in
Appendix A the likelihood (probability density
distribution) p(x|w;) of an event for each class w; €
{p, O, Fe} can be calculated, i.e. the probability of
an event x belonging to a given class w;.

As an example, the superposition of the esti-
mated probability density distributions, referring
to two sets of different observables, are displayed
in Fig. 5 (based on QGSJet simulations). The re-
gions where p(x|w,), p(x|wo) and p(x|we.) are
larger than the other two possibilities are colored
light, middle and dark grey, respectively. The left
graph shows the density distribution calculated in
the two dimensional space of the observables N,
and N|". A rough separation can be recognized, but
also a strong overlapping of the likelihood distri-
butions has to be admitted.

The right-hand graph of Fig. 5 shows an ex-
ample of two observables (N:r and N}‘f), which
exhibit only weak mass-discrimination power. Cor-
respondingly, the density distributions of the three
particle types are intermixed, and reliable con-
clusions could not be drawn. In case of selection
11, the mass composition is reconstructed for dif-
ferent sets of observables using the Bayes theorem
(Eq. A.1). When the estimated posterior probability
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Fig. 5. Superposition of three probability density distributions Zle P(x|w;)/3 deduced from QGSJet simulations using the observables
N, and N;f (left) as well as N: and Nl‘f (right). Events in the dark shaded area mark the region classified as iron, middle grey as oxygen,

and light grey as proton (selection II).

P(w;|x) is larger than p(w;|x), then the event is
assigned to class w;, otherwise to class w,. Taking
into account (by Eq. A.1) the estimated number of
incorrectly classified events (i.e. misclassification
rates) (Table 2) the true proportions of the differ-
ent particle types are reconstructed.

The classification rates P, = ﬁwﬁw/. (see Ap-
pendix: Eq. A.1 and Fig. 14) give the fraction of
correctly, P;, and wrongly, P;, classified events
with i # j, an example for three mass class is given
in Table 2. Of course, the sum of each row has to
be 100%. In the most probable cases the different
particle types are identified correctly, but the
knowledge of the incorrectly classified events could
be used for a correction due to the mis-classifica-
tion. In addition, the rates for the intermediate
mass particle types, He and Si, are given. Helium
is mostly classified as protons (57%) and silicon
as oxygen (54%). Due to the stronger fluctuations
and weaker correlations with mass and/or energy,

Table 2

different sets of observables result in lower true-
classification rates P;. In general, if the rates P; are
less than 50%, it is no more possible to deconvo-
lute the true proportions by matrix inversion of P;
(Eq. A.5), since the matrix P; becomes singular,
signaling that the determination of a class w; is
just haphazard. Therefore it is not meaningful to
consider more than three classes, since this would
require an analysis of further observables simul-
taneously, with a number of Monte Carlo simu-
lations larger than presently available.

As a cross-check the estimated posterior prob-
abilities p(w;|x) of a given measured event x, be-
longing to class w;, can be calculated (Fig. 6). The
center of the triangles shown correspond to equal
probability of belonging to any class, reflecting the
fact that it is nearly impossible to classify the
measured event, while points in the corners satisfy
the relation p(w;|x) =1, ie. the corresponding
event belongs to class w; with probability unity.

Classification matrices for three classes (p, O and Fe) and two different models. In addition to the classification rates of p, O and Fe, the
rates of classified intermediate groups He and Si, respectively, are given. The used observables are N:f and N, (3.6 < log N:l‘ <39

By, (%) QGSJet VENUS

w; =p w; =0 w; = Fe w; =D w; =0 w; = Fe
w;=p 77+3 2143 2+1 78 4+3 2142 12
w; = He 5743 39+3 4+1 64+3 32+2 441
;=0 14+2 61+3 25+3 15+2 61 +4 24+ 3
w; = Si 341 5443 43+2 3+2 SI+3 46 +2
w; = Fe 1+1 17+2 82+3 o'y 2043 80+3




254 T. Antoni et al. | Astroparticle Physics 16 (2002) 245-263
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p(wolx)=p(wplx)=0.5
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Fig. 6. Estimated posterior probabilities p(w;|x) of measured events deduced from QGSJet simulations using the observation vector

x = (Ne, NYY) (left) as well as x = (N, Ni>'1% GV ST Ey ) (right).

Hence, from given measured events we obtain in-
formation about the probabilities belonging to
class w; just as well. Evidently, the set N, and
N, allows to determine a well defined mass com-
position. In contrast, the set comprising N:’ ,
NEZ100 GV mand Y Ey, s less suitable for mass dis-
crimination mainly due to strong fluctuations of
the observables as can be seen in Fig. 6, right side.

The results of the composition determination,
using the observables N, and N, are given in Fig.
7 as relative abundances versus N:lr and mean
logarithmic mass (In4) vs. N. The mean loga-
rithmic mass (InA4) cannot be calculated unam-
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and Fe group, respectively. This procedure is of
course to some extent arbitrary, but this is always
implicit, when (In 4) is used. The statistical errors
(thick lines) are calculated according to a multi-
nomial distribution. The thin error bars corre-
spond to a methodical uncertainty, calculated by
the bootstrap method (see Appendix A). It reflects
the influence of the limited number of Monte
Carlo events. Apparently the use of the VENUS
model results in a lighter composition, compared

® QGSJet ]

w
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Fig. 7. The relative abundances of the classes p, O and Fe vs. log N\, reconstructed on the basis of two different hadronic interaction
models and using the EAS observables N, and N:f. The right graph shows the corresponding mean logarithmic mass (In4) vs. log N\
Statistical (thick lines) and methodical (thin lines) uncertainties are indicated as error bars.
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with the use of QGSJet. A tendency towards a
heavier composition above the knee (log N = 4.15
corresponding to 4 PeV) is indicated, albeit the
statistical and systematic uncertainties do not al-
low a definite conclusion and the results are clearly
compatible with an energy independent composi-
tion.

Results of several other combinations of ob-
servables by using the QGSJet model are summa-
rized in Fig. 8. In general, the tendencies are the
same. Remarkably, all sets omitting the electron
size N, (right graph) result in a heavier composi-
tion and a more pronounced increase above the
knee. As the electron size has the strongest mass
sensitivity, as well as the smallest fluctuations, the
mass compositions are predominantly determined
by N, and N (left). Compositions resulting from
sets of less sensitive observables differ from these
values (right). The tendencies are quite similar for
the VENUS model, but the absolute values are
shifted towards a lighter composition as expected
from Fig. 7.

The fact that different combinations of observ-
ables taken into account in the analysis, lead ap-
parently to different mass compositions (shown in
Fig. 8), reveals inadequacies of the reference
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model, i.e. that the degree of the intrinsic corre-
lations of different observables differs from those
of the real data. Otherwise the determined mass
compositions should be identical within the sta-
tistical errors.

5.2. Energy spectra

To estimate the primary energy E the most
important parameters are N, and N again, where
now N carries most of the information. As data
basis we use selection I. Due to the large com-
puting time requirements we do not apply the
Bayesian algorithms here and use instead neural
networks only. In principal there are no basic ar-
guments to prefer one particular method. Previous
publications have demonstrated the consistency
and equivalence of neural network and Bayesian
methods in EAS analyzes [26,27]. The neural net-
works employed have typically a simple net to-
pology 2 x 5 x 2 x 1, but several other topologies
have been used to estimate the methodical error of
this special choice. For training the network (ac-
cording to Eq. (A.7)) two independent samples
have been generated to allow a validation of the
results (Appendix A). Before data analysis, the

Dok e e s e
£ [ ]
3} ® average value % A
25 g v -
S ? o g :
2 @ ]
[ A 1
1.5 } O NH'NE>1OO GeV,ZEh,EhmaX E
L * nE>100 GeV ]
A NH'Nth ]
1 * o NH,N:,NEﬂOOGeV,ZEh ?
R N;[,ZEh,D_6 1
05 L TSR S N SN S TR T SR ST N
3.6 3.8 4 4.2 4.4
Ig N/

Fig. 8. Mean logarithmic mass (In 4) resulting from the analysis of different sets of observables vs. log N,}r (QGSlJet prediction). The
sets displayed on the right do not include the observable N.. The error bars are omitted to simplify the presentation of the synopsis. The
statistical errors are of the same order of magnitude as given in Fig. 7. But the systematic errors are larger by 40-50% for the data on

the right graph due to a weaker correlation with mass.
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response and the biases of the trained neural net-
work have to be carefully scrutinized. For this, the
performance of mass classification and energy es-
timation has been investigated with the other MC
sample as input. We consider the relative deviation
of the reconstructed energy E. from the true value
E\rwe, which is known for the simulated samples,
more precisely, the distribution of AE/E = (Eey —
Eirue)/Ee, Whose mean value and the standard
deviation represent the bias and the energy reso-
lution (relative error) of the reconstruction, re-
spectively.

Fig. 9 displays the relative error of the esti-
mated energy for different primary particles. The
relative error of a network, trained with QGSJet
samples, is shown in the left part. In general,
the bias for the various classes is less than 3-5%,
but the energy resolution (spread) proves to be
strongly mass dependent. As expected, the iron
class has the smallest energy spread (og. = 21% vs.
o, ~ 38%). The network trained with VENUS
samples leads to the same results. Also shown
(right) are the results of a network, which has been
trained with QGSJet samples analyzing events
generated with the VENUS model. With increas-
ing energy the QGSJet trained network under-
estimates systematically the true energy of the
VENUS samples. Moreover, the bias appears to
be mass dependent, implying that the degree of
the correlation between energy and the analyzed
shower observables is varying differently for the
different primary particles and models. This is

AE/E
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Fig. 9. The relative error vs. primary energy for different classes

a caveat to the estimate of true energies of the
measured event samples, namely that hidden mass
dependent correlations lead to an all-particle spec-
trum depending on the true mass composition.

Fig. 10 presents the reconstructed energy spec-
tra of measured data resulting from the analysis
using two different networks, trained with QGSJet
and VENUS samples. Apparently, the VENUS
trained network results in a steeper spectrum as
compared with the QGSlJet findings. It should be
emphasized that the network used takes into ac-
count not only the absolute values of the observ-
ables N, and N:f, but also their correlations. In
order to specify the relative error arising from the
model dependence, mean value and spread of
(AE/E), oqa = (Evenus — Eqasiet)/Eqasiee are ad-
ditionally given (inset). The variation of this model
error displays a change at higher energies, which
might indicate a change of the composition.

The resulting spectra are fitted by the trial
function (see Fig. 10)

which accounts for a smoothly changing power
law spectrum [28]. The parameter ¢ controls the
width of the transition region, and the knee posi-
tion Ey,e 18 defined by the center point of the
transition region. Asymptotically /(E) approaches
to power law functions E~"'"2. The parameter
uncertainties have been studied by calculating the
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: results obtained with a network trained with QGSJet samples (left)

and the result of the same network analyzing VENUS samples (right).
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Fig. 10. Differential energy spectra resulting from the analysis of data of the KASCADE experiment using two differently trained
networks (by VENUS and QGSlJet samples). The reconstructed energies are compared on an event-by-event basis and their differences
are given in the inset as relative error vs. the energy reconstructed on the basis of the QGSJet model.

Table 3

Comparison of parameters of the energy spectrum, derived on
basis of on the VENUS and QGSJet simulations, respectively.
The first error is the statistical one. The second error represents
the systematic uncertainty resulting from the small number of
simulated event

QGSJet VENUS
" 27740.003+0.03  2.87 +0.003 + 0.04
" 31140024006  3.25+0.02 +0.06
Einee (10° GeV)  5.5+£0.2+0.8 45+£03+09
2/df. 0.95 1.94

errors /(E) + AI(E) using the sampling correlation
matrix. But the resulting error bands are so narrow
that it does not visibly differ from the /(E) line.
The best-fit results are given in Table 3, including
statistical errors as well as the methodical error
derived from different training parameters of the
neural network. It is obvious that the statistical
errors are considerably smaller than the systematic
uncertainties resulting from the small number of
simulated events and from interaction models.
Fig. 11 compares the spectra of Fig. 10 with
results reported by other experiments. All mea-
surements, independently from each other, show a
steepening above a particular energy: the knee. But
the absolute intensity of the flux and the position
of the knee obviously differ. This is most likely due
to different model assumptions or energy conver-

sion functions used. The considerable deviation
between CASA-MIA [29] and the other two ex-
periments may be explained in this way. CASA-
MIA used the Sibyll model for constructing an
energy estimator E = f(N;,N,) from the electron
and muon sizes. The fact that Sibyll predicts sig-
nificantly lower values of N, and larger values
for N, [30] as compared to QGSJet and VENUS,
could lead to a systematic shift of the spectrum
towards lower energies. In view of the considerable
model dependence of our results, the overlap with
some of the other experiments should not be taken
as evidence for or against any of them.

5.3. Combined analysis of energy and mass

As an example, Fig. 12 shows the relative
abundances of a mass classification into three cate-
gories, as well as the corresponding mean loga-
rithmic mass, resulting from the analysis of central
showers (selection II) vs. the estimated energy. The
observables N, and N\" are used as input parame-
ters. Again, the VENUS model leads to a lighter
mean logarithmic mass in the considered energy
range as compared to the QGSJet model. Besides
the Bayesian method a neural network analysis
was performed additionally. The network results
are denoted by NN. Within the statistical errors
the mass composition resulting from both pattern
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Fig. 11. The differential all-particle cosmic ray flux obtained here compared to the results reported by Tibet ASy [31], Akeno [32], and
CASA-MIA [29]. The data points are multiplied by (E/ GeV)z‘S. Only statistical errors are presented.
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Fig. 12. Relative abundances reconstructed by Bayes classification vs. the reconstructed energy based on the QGSJet model and using
N, and N,'. Additionally, the corresponding mean logarithmic mass (In 4) (right; Bayes) and the corresponding variation resulting from
the neural network analysis (NN) are given. The error bars represent the statistical (thick) and methodical (thin) uncertainties.

recognition procedures agree. Our data reveal a
mixed composition, becoming lighter when ap-
proaching the knee and heavier above the knee.
This feature appears to be somehow mysterious,
but the tendency is supported by recent results of
the CASA-BLANCA [33] and HEGRA [34] ex-
periments. In fact, there are also astrophysical
arguments for a minimum of the mean mass in the
range of the knee [35].

In the present status of our analysis procedure it
is hardly possible to introduce more than three
classes for the reconstruction of the mass com-

position. If this were to be attempted additional
observables had to be included. A finer binding of
the energy scale (beyond the energy resolution
(AE/E)es) for the spectra of single masses would
require to deconvolute the resolution effects. In the
actual analysis this step has not been performed
and only a few representative values of the varying
mass composition (and no detailed energy spectra
of the different mass classes) have been presented.
To analyze the data beyond this limit we need, in
the simplest case, to construct from the misclassi-
fication matrices a matrix A, pp deconvoluting
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mass and energy resolution effects. Stressing once
more the curse of dimensionality (see Appendix
A), a very large number of simulated events is re-
quired for the determination of such a matrix (at
least 150,000 simulated events are needed). For the
same reasons we are presently unable to infer any
significant fine structure from the all-particle en-
ergy spectrum beyond the resolution (AE/E),,.
Different sets of observables lead to different
mass compositions. This feature may indicate that
not only the absolute values, but also the corre-
lations of the observables are not described satis-
factorily by any of the models. Nonetheless, a
reduced model dependence can be observed when
a well marked relation is projected out from the
correlations of the multivariate distribution. Fig.
13 displays on the left-hand side the relation be-
tween electron size N, and energy E, which shows
no difference between simulated and measured
samples. Of course, this is not surprising, since the
pattern recognition tool is just trained in that
way, such that deviations, incompatible with the
statistical accuracy, would cast some methodical
doubts on the used algorithms. More remarkable
is the agreement of NF>1% GV ys_ primary energy,
found by the same network though with larger
fluctuations of the mean values. That may be ex-
plained by the reduced mass sensitivity of NE>100 GeV
and the dominance of the NefN:Lr correlation (com-

~ —_————
< + KASCADE .
6 8
10°- ® P ® -
.o ¥
s Fe s § ]
I * u 2 ]
L m & |
10° . St

E A =
Fe . QGSJet 1
[ m A h
L m A o p ]
" 00 A
L A Fe A

[ E R B B R

6 6.25 6.5 6.75 7
Ig(E/GeV)

pare the observable sets in Fig. 8 left). Neverthe-
less, within the statistical significance level (in
terms of hypotheses tests like Student #-test) no
difference between data and model predictions can
be stated.

6. Discussion and conclusion

The present paper aims at presenting methods
of a determination of primary energy spectrum
and mass composition of cosmic rays in the energy
range 101°-5 x 10'® eV by an event-by-event analy-
sis of EAS data. The specific methodical feature is
the use of a non-parametric approach, studying
multivariate distributions of a number of EAS ob-
servables [27,36].

The present approach to obtain information
about the EAS primaries has following merits:

e [t specifies the inevitable model dependence of
any statement about spectrum and mass compo-
sition, introduced through the patterns provided
by the Monte Carlo simulations on basis of a
particular hadronic interaction model.

e The model dependence is not only revealed
by the results from the analysis of single EAS
observables when comparing different hadronic
interaction models, but the approach specifies
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Fig. 13. The projected relations log N, and log NF>1% GV respectively, vs. log(E/GeV) from two neural networks, trained to estimate
the energy and mass of the measured events using N, and N;" as EAS observables.
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also the degree of correlations between different
observables used for the multivariate analysis.

e This feature provides the possibility to test a
specific hadronic interaction model by exploring
the internal consistency of the results, when the
outcome of different sets of observables are con-
sidered. This aspect is of greatest importance
for approaching the best model reproducing
the observations in the most consistent way.

e Comparing the KASCADE findings with other
experiments shows that the discrepancies be-
tween results can well be attributed to the differ-
ent interaction models employed.
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Appendix A. Non-parametric statistical inference
Pattern recognition techniques are efficient tools

to determine the correct association of a given
sample to a certain category or class. From the

measurements or simulations of a physical phe-
nomenon, a set of quantities (observables) is ob-
tained, like fo or N,, which defines an observation
vector x. This observation vector serves as the in-
put to a procedure based on decision rules, by
which a sample is assigned to one of the given
classes. Thus it is assumed that an observation
vector is a random vector x whose conditional den-
sity function p(x|w;) depends on its class w; (e.g.
p, O and Fe classes).

In the following we consider so called non-
parametric techniques like Bayes classifiers and
artificial neural networks [6]. The term non-para-
metric indicates that the representations of the
distributions (like probability density functions of
Bayes classifiers or weights of neural networks) are
no more specified by a priori chosen functional
forms. They are constructed through the analysis
process by the given data distributions themselves.

It should be immediately emphasized that there
are some important limitations. In case of a finite
set of random samples, the dimension n of the
random vector x is limited by the following con-
dition: When considering each component of an
n-dimensional observation vector by M divisions,
the total number of cells is M” and is increasing
exponentially with the dimensionality of the input
space. Since each cell should contain at least one
data point this requirement implies that the size
of training samples (or reference pattern samples)
needed to specify the non-parametric mapping,
is increasing correspondingly. This condition is
called the curse of dimensionality [37] and prohibits
the simultaneous (multivariate) analysis of a larger
number of EAS observables, when the size of
training samples is too small.

A.1. Bayesian decision rule

The Bayes classifier is a powerful algorithm but
time consuming with large memory requirements.
However, its performance is generally excellent
and asymptotically Bayes optimal, so that the ex-
pected Bayes error (see below) is less than or equal
to that of any other technique [38]. The estimated
probability densities converge asymptotically to
the true density with increasing sample size [39,40].
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Fig. 14. Schematic illustration of the construction of two one-dimensional (overlapping) likelihood functions p(x|w, r.), approximated
by Gaussian distributions (sphere-of-influence) for each event, indicated on the abscissa (left). Classification using the Bayes decision
showing the proportion of mis-classified events by the hashed areas (right) (P(wre) = P(wy)).

The method is based on the Bayes Theorem [41]
plx|e;) x P(w;)

px)
likelihood x prior

plwlx) = < posterior

~ normalization factor (A1)
with p(x) = Y| p(x|w,)P(w;), which holds if the
different N hypotheses w; (i.e. classes) are mutually
exclusive and exhaustive. By a prior and a nor-
malization factor the theorem connects the likeli-
hood for an event x of a given class w; with the
probability of a class w;, being associated to a
given event x. The prior gives the a priori knowledge
of the relative abundance of each class and is
major basis of debates on Bayesian inference
procedures. It is nearly always the best to follow
the advice given by Bayes himself [41], generally
known as Bayes’ Postulate (occasionally also re-
ferred to as principle of equidistribution of igno-
rance): So far there exists no further knowledge,
the prior probabilities should be assumed to be
equal

P(w;) :% with ZN:P(w,-) =1 (A2)

In the fortuitous case that the likelihood functions
p(x|w;) are known for all populations, the Bayes
optimal decision rule is to classify x into class w;,
if

plwilx) > p(e;]x) (A3)

for all classes w; # w;, as illustrated (with the mis-
classification probabilities) in Fig. 14.

To construct an estimate p(x|w;) of the likeli-
hood p(x|w;) of class w;, the kth simulated event x;;
is assumed to have a sphere-of-influence where it
contributes to the probabilities (see Fig. 14). There
are various procedures to specify these contri-
butions whose superpositions lead to continuous
likelihood functions, replacing the frequency dis-
tributions of discrete simulated events N; of each
class w; in the n-dimensional observation space. A
standard choice of such spheres are multivariate
normal distributions, because they are simple, well
behaved, easily computed and have been shown in
practice to perform well:

1 & 1
PUxlon) === Y ——
N; ; (V2me)"\/|C]
1
X €xXp <—ﬁ|x—xki|> (A4)
The Mahalanobis metric ||x — xu|| = (x — x4)" %

C;'(x — xy) is used, because the observables are
transformed to unit variances by the sampling
covariance matrix C; for each class w;, resulting in
equal importance of all components.

The scaling parameter ¢ controls the width of
the sphere-of-influence and is obtained by the
median of an ordered statistics of estimated Bayes
errors for different initial values of ¢ [25]. The
Bayes error € represents the total sum (integral) of
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mis-classified events and is given in case of two
classes by the simple relation ¢ = [min{p(w;|x),
plw|x)} - p(x)dx (hatched areas in Fig. 14 right).
To account for the mis-classification, the rates
P = Py, .., i.¢. the probability of an event x € w;
being classified in the class w;, are estimated by
the leave-one-out method (also called jack-knifing).
Each simulated event is held back once while the
others are used to estimate the association of this
particular event. By a, so-called, bootstrap method
different subsets of each simulated class are used to
perform the leave-one-out method to give an as-
ymptotically unbiased estimate of the variance of
the P, [38]. Thus the true number of events n* can
be deduced from the classified events n; by a ma-
trix inversion:

> PBi'mp=nt with Py=P, ., (A.5)
7

A.2. Neural networks

An artificial neural network can be considered
as a non-linear transfer function

[ R - R (A.6)

mapping a bounded euclidian space of dimension
p to another space of dimension ¢g. The, so called,
multilayer feed-forward neural network is orga-
nized in L different layers: an input layer, L — 2
hidden layers, and an output layer. Each layer /
consists of a certain number #; of units (neurons),
which carry on the signals to the next layer. The,
so-called, network topology specifies the number of
units in each layer: ny X ny X ... xn;_; X n;. An
output unit y,,; of the output layer L is determined
for each observation vector (input units) x;; and
class w; entering the input layer and should be
close to the true value #;, given by the labeled
simulation events in terms of a well defined mea-
sure. Thus, the error function E(w)

E(w) :% ; Ni, ; (Vo (43, W) — 1) (A7)

has to be minimized. For each layer /, except of the
input, the outcome of each neuron m is calculated
by a weighted sum of the output of neurons of the

last preceding layer. Additionally an activation
Sfunction f(z) is applied to the sum

Y = f(2) =f(ZW7,'11 X Vi1 + W';") (A.8)

i=1

A convenient practice is to use the Fermi func-
tion f(z) =1/(1 +exp(—z)). The most common
algorithm for the network training, i.e. minimizing
E(w), is an adjustment of the weights w/,_, and
w)' by a stochastic minimization procedure [25]
or alternatively by the, so called, back-propagation
algorithm [42]. There exist different other algo-
rithms or extended versions of this basic back-
propagation, which try to circumvent problems in
finding the global minimum or sticking in a local
minimum. Additional problems arise, if the train-
ing process leads to an overtraining of the network
by adopting the properties of the training samples,
but cannot give satisfactory results, when it is
applied to another validation set. Thus, in a gen-
eralization phase one has to control the quality of
the network with an independent labeled set of
samples.

In general, the output y,; is a continuous
function. Hence not only the classification can be
done applying neural networks, but also parame-
ter estimation (regression) is possible, e.g. the es-
timation of the primary energy of EAS events. In
case a classification into N classes is required, the
output y,; of the network is divided into N re-
gions, each representing a single class [25].

In previous publications the consistency and
equivalence of neural network and Bayes classifier
results in EAS analysis have been demonstrated
[26,27]. The classification rates P; inferred from
both procedures do not differ significantly. Thus,
an adequate choice of the particular decision rule
and of the appropriate algorithm is just a matter
of the actual conditions like computing time and
memory workload.
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