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Abstract

A novel conception of ‘‘sensitive mode’’ (SM) is proposed to apply in gravitational-wave advanced interferometer

configuration (AIC). The SM is resonant oscillation of electromagnetic field in ‘‘white-light cavity’’, where the reso-

nance line is broadened without decreasing cavity quality. The resonant field frequency of the SM is greatly susceptible

to the change of cavity length, and the SM is established in a cavity with time constant smaller than a conventional

mode. Due to these advantages the sensitivity and bandwidth of AIC can be increased.

� 2003 Elsevier Science B.V. All rights reserved.
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There are currently several projects of gravita-

tional waves (GW) detectors that relay on ground-

based Michelson interferometers: GEO, LIGO,

TAMA, and VIRGO [1]. In these projects they

expect to measure a small phase shift between two
light beams, traversing two orthogonal arms of

interferometer. The length of the arm is arranged

such that path lengths in two arms differ by a half

wavelength, so the two beams interfere destruc-

tively on the output, producing a dark fringe.

However, a passing GW would stretch and squeeze

the arms, causing a small phase shift, which is

converted into an observable light-power change at

interferometer output. Different noise sources

deteriorate output signal-to-noise ratio [2]. To de-

crease fundamental shot noise level, the interfer-

ometers use power recycling techniques, which
increases the number of photons stored in the

cavity and hence improves signal-to-noise ratio. To

increase the output phase shift the resonant cavities

(in the LIGO, TAMA, and VIRGO), or optical

delay line (in the GEO) are used in the arms, where

the light is reflected back and forth several times

increasing effective path length. Similar effect will

be achieved in signal recycling configuration [3] of
the GEO, where an additional cavity is formed by

a partly transparent mirror, placed in interferom-

eter output. Other long time development topics to
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increase the performance of the GW interferometer

are using of cryogenic bar detectors, squeezed light,

QND technique, and white-light cavity (WLC) [4].

The concept of the WLC has been proposed to

increase the bandwidth of interferometer [5]. For

this purpose a transparent medium with anoma-
lous dispersion was suggested to use in the cavity.

At appropriate value of dispersion slope the reso-

nance line considerably broadens (without de-

creasing of cavity quality), providing the increase

of the interferometer bandwidth. In a recent ex-

periment [5] a medium with anomalous dispersion

and low loss was prepared, proving that a trans-

parent medium with anomalous dispersion can be
realized.

In this present paper we show that except of

broadened line the oscillation in WLC is extremely

sensitive to the change of cavity length, and define

such oscillation as the SM. We derive analytical

formulas describing the parameters of the SM and

analyze the AIC based on the SM, as well as we

propose a new way to establish the SM by using a
medium with normal dispersion.

Consider a Fabry–Perot cavity with an input

mirror with reflectivity r2 and losses p. Instead of a

rear mirror, a small cavity with input mirror with

reflectivity r21 and losses p1 is used. The rear mirror

of the small cavity is totally reflecting. The lengths

of the large and the small cavities are, respectively,

L and b (see Fig. 1). The small cavity is filled with a
gas with refractive index n(x), and absorption

coefficient aðxÞ. The reflective function of the

cavity for monochromatic waves, calculated using

standard techniques [6] is

RðxÞ ¼ ir þ i
1� r2 � p

r þ ði=R1ðxÞÞ expð�2iLx=cÞ ; ð1Þ

where c is the speed of light in vacuum, and R1ðxÞ
is the reflective function of the small cavity, which

can be calculated analogously

R1ðxÞ ¼ ir1 þ i
1� r21 � p1

r1 þ exp½2bxðaðxÞ � inðxÞÞ=c� :

ð2Þ
The lengths of cavities are arranged to provide

the resonance conditions exp(�2iLx0=cÞ ¼ �1, and
expð�2ibx0nðx0Þ=cÞ ¼ �1, as well the reflectivity

of the small cavity is arranged to be about unity (see

below). When both cavities resonate at the angular

frequency x0, the reflective function (1) is:

RðxÞ ¼ ir þ iqðxÞ; ð3Þ

qðxÞ ¼ 1� r2 � p
r � ð1=jR1ðxÞjÞ exp½�iwðx; LÞ� ; ð4Þ

wðx; LÞ ¼ 2Lx=cþ /ðxÞ � p=2; ð5Þ
where /ðxÞ ¼ argR1ðxÞ.

Here jqðxÞj is a narrow resonance function with

central angular frequency x0. As it is seen from (4)

x0 is a root of the equation wðx; LÞ ¼ 2pk (k is an

integer). When the cavity length changes by DL
the resonance angular frequency changes by Dx,

and its new value x0 þ Dx must satisfy the equa-

tion

wðx0 þ Dx; Lþ DLÞ ¼ 2pk: ð6Þ

To approximately solve the (6) an reveal the

relationship between Dx and DL, it is convenient

to expand /ðx0 þ DxÞ in series of Taylor around

x0. Since /ðxÞ is an odd function of ðx � x0Þ, its
second derivative in x0 is zero, and (6) becomes

/000

6
Dx3 þ ½2ðLþ DLÞ=cþ /0�Dx þ 2DLx0=c ¼ 0;

ð7Þ

where /0 is the first derivative of the phase (phase

slope), /000 is the third derivative of the phase re-

spect to x calculated in x0.

In the case of a cavity with a conventional rear

mirror having constant phase (/0 ¼ /000 ¼ 0) the

Fig. 1. Sketch of the cavity configuration. The dotted line is an

additional mirror, which can be used for extracting a small

portion of the light in two opposite directions. Reflective

functions of the input mirror of the large cavity (1), the input

mirror of the small cavity (2), and rear mirror are corre-

spondingly ir, ir1 and i.
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well known expression of frequency shift follows

from (7)

Dx ¼ �x0DL=L: ð8Þ
However, in the case of a rear mirror (or a small

cavity) having a frequency dependent phase with

the negative slope satisfying the condition

/0 ¼ �2L=c; ð9Þ

the solution of (7) essentially differs from (8), being

with relative error 
ðDL=LÞ1=3

Dx ¼ �ð12x0DL=c/
000Þ1=3: ð10Þ

To estimate the frequency shift from (10) note

that negative phase slope is rather an unusual
property, which takes place in a narrow frequency

interval, where the phase changes on 
p (see Fig.

2). Since we require (9) it means that this angular

frequency interval is dx 
 pc=2L. Therefore, /000 

p=dx3 
 ðL=cÞ3, and hence from (10) we obtain

the approximate formula

Dx 
 �x0ðDL=LÞ1=3ðk0=LÞ2=3; ð11Þ

where k0 ¼ 2pc=x0 is the wavelength.

Note that in [7], to estimate /00 (if / is not an

odd function) we used the crude approximation

/00 
 L=cx obtaining an overestimated value of

frequency shift Df 
 f ðDL=LÞ1=2 
 10 kHz for

DL=L ¼ 10�21. By using present the more correct

approximation of the frequency interval, where the

negative phase slope takes place, one can obtain

/00 
 p=dx2 
 ðL=cÞ2, and better estimation of the

frequency shift in that case: Df 
 f ðDL=LÞ1=2
ðk0=LÞ1=2 
 0:1 Hz.

Formula (11) provides a good way to estimate

the frequency shift. It shows that the frequency
shift decreases, when cavity length increases.

Nevertheless, due to the cubic root relationship,

the value of (11) even for L ¼ 4 km still consider-

ably surpasses conventional frequency shift (8).

For example, if L ¼ 4 km, k0 ¼ 1064 nm, and

DL=L ¼ 10�21, formula (11) gives Dx=2p 
 10 Hz,

meanwhile a conventional frequency shift (8) is

only about 10�7 Hz.
Thus under condition (9) a special oscillation is

established in cavity, being extremely susceptible

to the change of cavity length. When this condition

is violated and the second term in (7) becomes

equal to the third one in order, the frequency shift

sharply decreases to the conventional value (8),

which means that the SM is transformed into the

conventional mode. Note that condition (9) was
proposed (in other definitions) for the first time in

[5] to increase the bandwidth of cavity without

decreasing its quality. Such novel cavity was de-

fined as the WLC to emphasize that it resonates in

a wide band of frequencies. Here we showed an-

other important consequence of (9) missed in [5]:

under condition (9) the oscillation becomes ex-

tremely sensitive to the change of cavity length.
Because of that, we define such oscillations as the

SM and believe that the SM can find different

applications, particularly in interferometric de-

vices. Thus, the SM is actually the resonant oscil-

lations in the WLC. Nevertheless, the introduction

of a new term – the SM seems to be relevant, be-

cause the SM can be established not only in optical

resonators, but for example in microwave [8] or
acoustic resonators. On the other hand, the ter-

minology WLC does not point out the high sen-

sitivity of oscillations in the WLC.

Negative phase slope, the key condition for es-

tablishing the SM (or for building the WLC) can

be realized by using a transparent medium (gas)

having anomalous dispersion [5,8] (it should be

noted that such gas has been investigated in the
past [9] as a medium supporting superluminal

propagation of light pulses). To obtain a negative
Fig. 2. Resonance function of the small cavity. r1 ¼ 0:4; p1 ¼
0:8384243; c ¼ 0:5 MHz, Ab=k0 ¼ 36720:14 Hz.
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slope we propose to use in the small cavity a gas,

which is pumped to obtain the population inver-

sion. Refractive index and amplification coefficient

of such gas with a spectral line centered on the x0

can be written as a conventional (absorbing) gas

using a simple oscillator model. Assuming that all
the atoms are pumped to a given energy level we

will have

nðxÞ þ iaðxÞ ¼ 1þ 2pA
x � x0 þ 2pic

: ð12Þ

Here A ¼ Ne2=mx0, N is density of the gas,

e and m are the charge and mass of electron, and c
is a damping constant for which we will use an

arbitrary value 0.5 MHz.

Although in the vicinity of x0 such gas has

normal dispersion and a positive phase slope,

nevertheless by appropriately arranging the small

cavity parameters one can achieve required nega-
tive phase slope satisfying (9). For this purpose,

we will use r1 ¼ 0:4, p1 ¼ 0:8384243; Ab=k0 ¼
36720:14 Hz. The last condition can be arranged

both by tuning the length of the small cavity or the

density of the gas. For example, if b ¼ 10 cm and

k0 ¼ 1064 nm, it must be A ¼ 0:3907023 Hz. Then,

calculating in (2) the reflective function of the

small cavity we have jR1ðx0Þj ¼ 1:00000175, and
/0 ¼ �26:67� 10�6 s, satisfying Eq. (9) for L ¼ 4

km. Thus, the SM is established in the large cavity

or, which is equivalent, the large cavity becomes

the WLC, providing greatly increased value of

frequency shift (10). Calculating from (4), and

substituting in (10) the value /000 ¼ 1:63� 10�13 s3

we obtain the exact formula for the shift Df of the

SM resonance frequency

Df ½Hz� ¼ Dx=2p ¼ 1:95 � 107ðDL=LÞ1=3: ð13Þ
For DL=L ¼ 10�21 this formula gives Df ¼ 1:95

Hz, unlike to above mentioned approximated va-

lue 10 Hz, following from (11). Note, that (10),

(11), and (13) are still valid if Dx is inside the

frequency interval dx 
 pc=2L, where the phase

has a negative slope. By substituting this value in

(11), one can found that the maximum shift of the

cavity length DLmax still allowing the existence of

the SM is DLmax 
 0:1k0. Further shift of the cavity
length the cubic root dependence (11) transforms

to linear one (8), which means that the SM is

transformed to conventional mode, i.e., the WLC

becomes a conventional cavity. This conclusion

follows from the exact numerical solution of
Eq. (6), which gives the SM resonance frequency

shift versus the change of the cavity length, (see

Fig. 3).

On the base of high sensitivity of SM frequency

to the change of cavity length, an idea of AIC

scheme can be proposed, where the shift of SM

frequency is converted to appropriately increased

output phase shift. In this AIC the external laser is
removed, and the lasing of SM in the large cavity is

induced, when the gas in the small cavity is ap-

propriately pumped. The phase U of the output

light is U ¼ 2x0DL=c, so when cavity length will

change on DL due to the GW, the frequency of the

SM will also change according to (10), and U will

change by DU ¼ 2x0DL=cþ 2DxL=c 
 2DxL=c.
For the parameters used in (13), we obtain DU 

103ðDL=LÞ1=3, which gives a strongly increased value
of the phase shift DU 
 10�4 rad for DL=L ¼ 10�21,

and DU 
 10�5 rad for DL=L ¼ 10�24.

Another feature of the SM and WLC is the

broadened resonance line, which enhances inter-

ferometer bandwidth. Let us consider this feature

in more details using the above obtained parame-

ters of small cavity, which transforms the large

Fig. 3. Shift of the resonance frequency of the SM versus 4-km

cavity length variation (solid line) derived from the exact nu-

merical solution of Eq. (6). The dotted line corresponds to

linear dependence (8) of conventional mode, and the dashed

line represents the asymptotic cubic root dependence (13).
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cavity into the WLC. Numerical calculations of (4)

give the resonance function jqðxÞj, shown in Fig. 4

(solid lines). The dotted lines correspond to the

resonance function of the conventional cavity,

which is obtained from (4) by substituting

jR1ðxÞj ¼ 1; /ðxÞ ¼ p=2. It is seen that the WLC
has wider resonance line and consequently shorter

storage time than a conventional cavity, because

cavity bandwidth and storage time are inversely

proportional quantities (it follows from the general

properties of Fourier transform of cavity resonance

function and its temporal function, which describes

the processes of loading or decaying).

It is useful to calculate the relation between the
bandwidth and the finesse of the WLC. By

changing r in (4), one can numerically derive the

values of the finesse and appropriate bandwidths

for both conventional cavity and the WLC. To

estimate analytically this relation, we expand the

exponent in (4) in Taylor series up to the third

order around x0. Then the width 2dx of the res-

onance function at 0.71 amplitude is determined
by the equation

ðrb � 1þ dw2=2Þ2 þ dw2 ¼ 2ðrb0 � 1Þ2; ð14Þ
where b0 ¼ jR1ðx0Þj; b ¼ jR1ðx0 þ dxÞj.

For a conventional cavity (dw ¼ Ldx=c) the

known expressions of the frequency bandwidth

2df ¼ 2dx=2p and the storage time s follow from

(14), by substituting b 
 b0 ¼ 1

2df ¼ c=2LF ; s ¼ 1=2pdf ¼ 2LF =pc; ð15Þ

where F ¼ pðrb0Þ
1=2

=ð1� rb0Þ is the cavity finesse.

However, for the WLC one should take

dw ¼ /000dx3=6 and utilize the function jR1ðxÞj.
Then the dependence b ¼ b0ð1� 810dx2Þ is nu-

merically derived from (2), and after appropriate

transformations of (14) the following simple ex-
pression for the WLC bandwidth is obtained:

2dfWLC½kHz� ¼ 11:37=F 1=2: ð16Þ
As it was mentioned above the WLC storage

time is inversely proportional to its bandwidth.

However, the appropriate exact formula can not be

derived within the present monochromatic waves

consideration. Therefore, we have the following

asymptotic formula for the WLC storage time:

sWLC½ms� 
 1=2pdfWLC 
 0:03F 1=2: ð17Þ
Corresponding to (15)–(17) curves, plotted in

Fig. 5 by the solid and the dotted lines, reveal that

Fig. 4. Resonance functions of 4-km WLC (the solid lines) and

conventional cavity (the dotted lines). For r ¼ 0:97 (which

corresponds to cavity finesse F ¼ 103) the conventional cavity

has line width at 0.71 amplitude 0.36 kHz, and the WLC has

line width 1.24 kHz. For r ¼ 0:999 (finesse is 3150) the line

widths of the conventional cavity and the WLC are corre-

spondingly 12 and 224 Hz.

Fig. 5. Storage times of 4-km conventional cavity (the dashed

line) and the WLC (the solid line), derived from numerical

analysis of the resonance function (4). The dotted line corre-

sponds to approximate formula (17). Storage times of conven-

tional cavity and the WLC are correspondingly 0.87 ms, and


0.3 ms for F ¼ 103 ðr ¼ 0:97Þ, and 26.67 ms and 
1.4 ms for

F ¼ 3150 ðr ¼ 0:999Þ.
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the WLC bandwidth is inversely proportional, and

the storage time is directly proportional to

the square root of cavity finesse. Because of that it

is beneficially to employ the WLC with high fi-

nesse, to increase the GW induced output phase

shift; by this the storage time increases not very
much.

In conclusion, we revealed that the frequency of

resonant oscillation in the WLC is extremely sus-

ceptible to the change of cavity length, and intro-

duced for such oscillation a new term – the SM.

We

• obtained asymptotic formulas for the SM main

features. These formulas show that the shift of
the SM resonance frequency is proportional to

the cubic root upon the relative shift of cavity

length, so it greatly surpasses that of a conven-

tional mode;

• revealed that the WLC bandwidth is inversely

proportional, and the storage time is directly

proportional to the square root upon cavity fi-

nesse, which enhances considerably the interfer-
ometer bandwidth;

• proposed the AIC scheme with significantly in-

creased sensitivity, where the SM frequency

shift is converted to appropriately increased

phase shift;

• proposed a new approach to build the WLC by

using an active medium with normal dispersion.
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