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The accurate measurement of the elemental composition and energy spectra of primary cosmic rays in the 
energy range 1014 - 1017eV is vitally important. The information carried by Extensive Air showers (EAS) in this 
energy range is limited by significant fluctuations of the shower development, insufficient experimental sampling 
and uncertainties of the detector response. Additional uncertainties arise from different simulation procedures and 
statistical methods used for inferring results from the measurements. We propose to combine an advanced EAS 
simulation program like CORSIKA with the ANI multivariate statistical analysis package for an event-by-event 
analysis and for a standardization of the inference from EAS data. As an example, the possibilities of modern 
EAS installations at mountain altitudes and sea level are explored. The accuracies of the elemental composition 
determination based on measured components of EAS are presented. The Neural Networks classification and 
Bayesian Decision Making approaches are used and compared. The new nonparametric methods of primary 
energy estimations are discussed. 

1. I n t r o d u c t i o n  

The main objectives of EAS observations are 
the possible sources of cosmic rays and the mech- 
anisms of particle acceleration in the interstellar 
medium. The particular physical quantities to be 
measured are the energy spectra and elemental 
composition of cosmic radiation incident on the 
Earth's atmosphere. The direct cosmic ray meas- 
urements on board of satellites and balloons are 
well described by the supernovae diffusive shock 
acceleration mechanism [1]. However, for energies 
above 1014 eV Fermi acceleration becomes less ef- 
fective [2] and the most well-known peculiarity of 
cosmic rays - the so-called all particles spectrum 
knee - is detected in the region of 3 x 101~ - 5  x 1015 
eV [3]. Several hypotheses are proposed for the 
explanation of the particle acceleration for such 
energies [4,5], but lack of precise and reliable 
results on the elemental composition around the 
"knee" prevents the strict physical inference of the 
new acceleration mechanism and possible so far 
known new types of natural high energy particle 
accelerators. 
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Theore, the problem of cosmic rays origin can 
only be solved if one succeeds in measuring the 
elemental composition of cosmic rays in the en- 
ergy range of 1014- 1017 eV. However, direct 
measurements in the mentioned energy region are 
impossible due to the small fluxes. Indirect meth- 
ods based on registration of EAS have to be em- 
ployed. 

2. I n t e r p r e t a t i o n  o f  E A S  data  

When interpreting the results of ground-based 
experiments with cosmic rays serious ambiguities 
and contradictions often arise. These are connec- 
ted with the nature of such indirect experiments 
which detect only secondary particles of late gen- 
erations in the shower development. The charac- 
teristic quantities of the primary cosmic particle - 
its elemental species and energy - can be inferred 
from the experimental data only by the help of 
Monte Carlo (MC) simulations and specific clas- 
sification algorithms. The significant lack in our 
knowlege about details of nucleus-nucleus inter- 
actions beyond (man made) accelerator energies 
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and the strong fluctuations of all shower para- 
meters are the main problems in such analyses. 
However, it is very helpful to mesure as many 
as possible independent parameters in each indi- 
vidual event in order to reduce uncertainties by 
correlations between observables. Thereby, more 
reliable information can be yielded to reconstruct 
the primary particle type and its energetic char- 
acteristics as well as the peculiarities of strong 
interactions at the top of the atmosphere. 

In previously used methods, only the distribu- 
tions (histograms) summarized over experiment 
and simulation, respectively, are compared and 
integral hypotheses, asking to what extent the 
data are compatible with a particular hypothesis 
about composition and scaling violation e.g. are 
tested. Thereby mostly qualitative conclusions 
were obtained, in contrast, the techniques pro- 
posed here provide the possibility to analyze EAS 
data on event-by-event basis [6]. 

We develop a unified theory of statistical infer- 
ence, based on nonparametric models, in which 
various nonparametric approaches (density estim- 
ation, Bayesian decision making, error rate estim- 
ation, feature extraction, sample control during 
handling, neural net models, etc...) are imple- 
mented [7,8]. 

3. Bayes ian  and Neura l  Decision rules 

In the present approach each event represents 
a point in the multidimensional space of the EAS 
parameters. The data are obtained with the ANI 
[9] and the KASCADE [10] detector installations 
using results of the air shower simulation code 
CORSIKA [11] and the ANI statistical analysis 
package [12]. 

In the Bayesian approach classifying a mixture 
of distributions losses due to incorrect classifica- 
tion [13] are minimized. Therefore the Bayesian 
decision rule takes the form (a simple loss func- 
tion is assumed): 

A = rnaxi{IS(A~/v)}, i =  1, . . . ,  K (1) 

where the space of possible states of nature 
A -- (p, a, O, Si, Fe) consists of K=5 groups 
of primary nuclei, v is the multivariate measure- 
ment and 13(Ai/v) are nonparametric estimates of 

posteriori densities, connected with conditional 
ones by the Bayes theorem: 

~(Ai /v )  - Pi" ~(vf fAi)  p(v) (2) 

Conditional densities are estimated by training 
samples (TS) obtained from CORSIKA simula- 
tion using Parzen's method with automatic kernel 
width adaptation. In this method some probabil- 
ity density values are calculated which correspond 
to different values of method parameters. Then 
the sequence obtained is ordered and the median 
of this sequence is chosen as final estimate. The 
probability density is estimated by: 

1 M, 
~(v/A,)  -- 2~d/2h ~ ~ e - r ~ / h ~ W j ,  i = 1 , . . . , n ( 3 )  

5 

where d is the feature space dimensionality, M 
is the number of events in the i - t h  TS class, rj 
is the distance to the j - t h  neighbor in the Ma- 
halanobis metric 

= (v - uSR-I(  - (4)  

R is a sampling covariance matrix of the class 
to which u belongs, Wj are the event weights and 
h is the width of the kernel. 

The Neural decision making is another non- 
parametric technique mapping the multidimen- 
sional measurements into one dimensional 'de- 
cision' (0-1)interval [14,15]. The "target" output 
OUT*arget(k) for events of the k-th category (we 
restrict ourselves to networks with a single output 
node) is determined to maximize the shift of the 
alternative classes from each other: 

k - 1  
OUTt~ga(k) - K -  1' k = 1 , . . . , K  (5) 

OUTtarg*t(k) E (0, 1) 

The actual event classification is performed by 
comparing the obtained output value with the pre- 
defined intervals in the (0, 1) interval. As expec- 
ted the data flow passing through the trained net 
is divided into 5 clusters concentrated in the dif- 
ferent regions of the (0, 1) interval (see figure 1). 
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Figure 1. Neural network output results (his- 
togram) compared to input densities (smooth 
curves) 

This neural decision rule is also a Bayesian one, 
therefore the output signal of a properly trained 
feed-forward neural net is an estimate of the 
posteriori probability density [16]. 

The expected minimal classification errors 
caused by the overlap of the distributions (the 
Bayes error) depend on the discriminative power 
of the feature subset selected and on the learning 
power. By moving the decision points along the 
(0, 1) interval we can change the relation between 
the errors of the first and second kind (the posi- 
tion of the decision points is the neural analog of 
the loss function in the Bayesian approach). 

The primary nucleus estimation was done for 
the ANI experiment operating on Aragats moun- 
tain research station of the Yerevan Physics In- 
stitute, Armenia. The experimental complex con- 
sists of a ground-based shower array, muon de- 
tectors installed in a underground hall and a high 
resolution electron density detector. The location 
of the station (3250 m above sea level) permits 
the accurate determination of the energy of the 
primary particle, and provides also an estimation 

Figure 2. Purity vs efficiency for Neural Net and 
Bayes classification methods 

of the primary particle type with rather good ac- 
curacy. 

The purity-efficiency plots (figure 2) show 
the good agreement of both nonparametric ap- 
proaches. Different points were obtained by al- 
tering the ~ priori probabilities in the Bayesian 
method and the decision points in the neural 
method, respectively. 

4. Variable Selection and  Energy  Est ima-  
t ion  

Figure 3 indicates that one-dimensional distri- 
butions of simulated EAS parameters (numbers of 
electrons and muons, age and electron density at 
a distance of 120 m from the shower core position) 
for different primaries overlap significantly. 

Thus, for the multivariate analysis the key for 
determination of the elemental composition is the 
availability of a large number of measured EAS 
parameters. The feature selection problem is 
solved by implementing one-dimensional, correl- 
ation and multidimensional selection procedures. 
In figure 4 the three-dimensional plots of EAS 
parameters are apparently distinct for iron and 
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Figure 3. One-dimensional distributions of EAS 
parameters (see text) 

Figure 4. Three-dimensional scatter plots of se- 
lected EAS features 

proton showers (altitude 3250 m above sea level). 
As one can see from figure 5 adding additional 

EAS observables increases significantly the accur- 
acy of the energy estimation. The accuracies are 
different for different nucleus groups and better 
for heavy nuclei, as expected. The introduction 
of the detector response (KRETA data, see sec- 
tion 6) deteriorates the accuracies, but the usage 
of additional parameters (as the number of muons 
in the central detector N e D  ) can improve the situ- 
ation. 

The comparison of accuracies achievable at 
mountain and sea level experiments (see figure 6) 
reflect the obvious fact that shower fluctuations 
just after reaching the maximum are significantly 
lower than at the end of development. Recently, 
for the ANI experiment a new directly measur- 
able parameter (the electron density at a distance 
of 120 m from the shower axis) has been intro- 
duced [17]. that enables the energy estimation in- 
dependent of the primary. The correlation of this 
parameter with energy is larger than with number 
of electrons and muons. The use of this parameter 

with others like age leads to an improved accur- 
acy. 

5. M a s s  d i s c r i m i n a t i o n  o f  p r i m a r i e s  

As local nonparametric models the Bayesian 
decision method and regression method were ap- 
plied to the CORSIKA simulations with and 
without the detailed simulation of the KASCADE 
and ANI installations. The local models use the 
neighborhood (in the multidimensional space of 
measured EAS parameters) information to de- 
cide about the particle and energy type. The 
Neural Networks are trained on the whole train- 
ing sample, providing global solutions on the ex- 
penses of time consuming, complicated training 
strategies. 

In figure 7 these methods are compared in the 
task of classifying multidimensional EAS data on 
the basis of the observables (number of electrons, 
muons and shower age were used) into the 5 
categories, proton, helium, oxygen, silicon and 
iron. Each of 5 control samples (1000 independ- 
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ent simulation trials) consists of "pure" particles 
of the mentioned groups and the proportions of 
their classifications to different nucleus groups are 
presented. 

The results demonstrate rather good consist- 
ency of all nonparametric methods, proving rel- 
evance and power of the nonparametric methodo- 
logy. The Bayesian decisions are superior to the 
regression methods, as in the latter case only one 
nearest neighbor was used. 

In figure 8 the classification probabilities de- 
duced from the mountain altitude and sea level 
simulations are compared showing clearly the ad- 
vantages at mountain altitudes. For sea level two 
modes are presented corresponding to the case 
of including the "known" primary energy to en- 
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Figure 6. The accuracy of energy estimation at 
different altitudes using the nonparametric regres- 
sion method (sea level and 3250 m level data) 

able direct comparison with mountain altitudes 
and the realistic case, when only numbers of elec- 
trons and muons have been used for classification. 

6.  D e t e c t o r  r e s p o n s e  

The results presented in the previous section 
concerned the ideal case of knowing exact num- 
bers of electrons and muons in the EAS. To es- 
timate the bias due to finite sampling and recon- 
struction errors a detailed detector simulation of 
the KASCADE experiment on the basis of  the 
GEANT package was made taking into account 
all shower particles, absorbers and active materi- 
als, energy deposits, times, trigger conditions and 
efficiencies, as well as the electronics, digitization 
of pulse-heights, times, etc... 

In the second step the KASCADE reconstruc- 



122 A. Chilingarian et al. /Nuclear Physics B (Proc. Suppl.) 60B (1998) 117-123 

0.6 

0.7' 

6.6 

0.5 

6.4 

6.3 

0.2 

6.1 

6 

0.8 

0.7 

0.6 

6.5 

6.4 

0.3 

6.2 

0.1 

0 

: i i ! i 

+ ? t i i  ....... 

_ ~,.....+,...+.....<_...+~ 

ll......k..-.-4 .--.-k ..-- ~ 
| 1  i + .... • 11,~++~...+.~....-~ ....... 

.... ;.~.V,.....i.....~.....I 

.... +......~...~...., ...... 

~ " i ' ' t  "~" '" i  ..... 

.... ,+ ,+ +~x~: . 

. . . .  +_ .. ~.+..+~...~ .... 

- -.+ --+-..?-~k .... 

. . . .  +......~.. ~+++.++.w+ 

. . . .  + ..+++.~.÷..-+ ~. 
i ~ l P i  ! •  

0.9 . : : : : 

0 . 6  i...i.....[....:i..-..i ...... 

0 . 6  - a , ' " ' " - " " ¢ ' - - ¢  ..... 

0.6 ............................ 0.S - i  ......................... 0.6 - - - ,  ......................... 

6.7 ~---..w~.....~..---~ ..... 6.7 :-...i.......w.....:...., 0.4 .... ,~-.--~-...+ ............ , 

i ? 0.3 --'-~÷"-÷.--~---, o.s ............................. o.s ~ ......... I ~ Y I  

0.5 . . . .  + ' --- ,+--+ ........... 0.5 : ..b...-+,-..-+-- -.+..-.-, 0.2 . . . .  . - -~+-. . . .+. . . .+. '"  ~ 

~ . i  ~ i i ' e ~ - :  t ,  ~ : 0 . 4  0 . 1  ........... +---+---- .--  ..... 

o.~ 72: --,-*..-:..-.: ...... o.-~ o 

6.2 .-r-+---.-!._m-*-..--~ ...... 0.2 o . ~  o 65 ,Y 
illi i "A | 

6., ~'+......~.~...~ ..... 6. ~:.+ .i..+....'-~.~. l 
: i !  i + , ° + +  . . . . . . . . . .  ..... 

i . . . . . . . . . . . . . . . . . . . . .  

=..+-..4-..+-~q-..-..i 
: i  i . i  
- '" ! h + + ~ i  ...... 
:..i.....h+ +~ ....... 

~ i~: + i i~; 

0.9 

0.8 

0.7 

I 0.6 
0.8 ~ -~+~ "+  " " "~  

0.5 
0.7 ~--+---- +---÷--- -~+'" 

+ + + ~ C O R S l K A d a t a  0.4 

: i lL~ # • n o n p m ' m n e t r i c  0.3 
0 . 5  . . . .  + + + ~ ÷ ~  ..... r e g r e s s i o n  

0 . 2  
0.4 - " '  " ' + ' " + ' " ' ~  ...... ~" n e u r a l  net 

0 . 1  
0.3 .... + . . . . . . . . . . . . .  ~ ....... am bayeatma method 

0 
0 . 2  . . . .  +" " " + " + ' ~ - ~  ...... 

p a r a m e ~ r s :  N . ,  NI~ , age 
0.1 = . . b . . 4 . . - J ~ . i  ...... eae~' range: lff ~ - 16~C.~V 

Figure 7. Primary nucleus classification by 
neural, Bayesian and regression methods (simu- 
lated data) (see text) 

tion program (KRETA) was applied. The EAS 
core position, arrival direction, electron- muon 
densities, electron and muon numbers from the 
array, hadron information, arrival time distribu- 
tions in the central detector, and many other char- 
acteristics were calculated. 

In figure 9 the classifications using pure sim- 
ulation and including the detector response are 
compared, as done for the energy estimation in 
figure 5. As expected, the misclassification rates 
increase for the realistic experimental situation 
and resolving protons and alpha particles is very 
doubtful, but the overall results are satisfactory 
and the primary identification (especially for pro- 
ton and iron) still remains reliable. 
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