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Gamma-ray glow preceding downward terrestrial
gamma-ray flash
Yuuki Wada 1,2,3, Teruaki Enoto 2,4, Yoshitaka Nakamura5, Yoshihiro Furuta6, Takayuki Yuasa 7,

Kazuhiro Nakazawa 8, Takeshi Morimoto 9, Mitsuteru Sato10, Takahiro Matsumoto1, Daisuke Yonetoku11,

Tatsuya Sawano11, Hideo Sakai12, Masashi Kamogawa13, Tomoo Ushio14, Kazuo Makishima1,2,15 &

Harufumi Tsuchiya16

Two types of high-energy events have been detected from thunderstorms. One is “terrestrial

gamma-ray flashes” (TGFs), sub-millisecond emissions coinciding with lightning discharges.

The other is minute-lasting “gamma-ray glows”. Although both phenomena are thought to

originate from relativistic runaway electron avalanches in strong electric fields, the connec-

tion between them is not well understood. Here we report unequivocal simultaneous

detection of a gamma-ray glow termination and a downward TGF, observed from the ground.

During a winter thunderstorm in Japan on 9 January 2018, our detectors caught a gamma-ray

glow, which moved for ~100 s with ambient wind, and then abruptly ceased with a lightning

discharge. Simultaneously, the detectors observed photonuclear reactions triggered by a

downward TGF, whose radio pulse was located within ~1 km from where the glow ceased.

It is suggested that the highly-electrified region producing the glow was related to the

initiation of the downward TGF.
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S ince McCarthy and Parks1 found radiation-dose enhance-
ments inside thunderclouds with an airborne detector in
1980s, high-energy phenomena associated with thunder-

storms have been detected inside the Earth’s atmosphere and
from space. Terrestrial gamma-ray flashes (TGFs) are burst-like
emission with their photon energy extending up to 20MeV that
last for several hundred microseconds, coincident with lightning
discharges. They were first detected from space by Compton
Gamma-Ray Observatory2, and since then have been reported by
many other satellites3–8. Similar phenomena but going downward
have been found in recent years at ground level9–17. They, now
called “downward TGFs”, share several features with TGFs
observed from space, such as coincidence with lightning, sub-
millisecond durations, and energy spectra extending to >10MeV.
Downward TGFs that contains enough photons above 10MeV
have been experimentally shown to trigger atmospheric photo-
nuclear reactions, namely producing neutrons and positron-
emitting radioactive nuclei13,14. These photoneutrons can be
observed as a short-duration gamma-ray burst lasting for several
hundreds of milliseconds, as they are absorbed by atmospheric
nuclei via neutron-capture processes14,18.

Gamma-ray glows, also referred to as long bursts19 or thun-
derstorm ground enhancements20, are energetic radiation from
thunderclouds with energies up to tens of MeVs, lasting for a few
seconds to several minutes. They have been observed by airborne
detectors1,21–23, at mountain-top20,24–29 and sea-level observa-
tion sites19,30–33. Gamma-ray glows usually coincide with passage
of thunderclouds, and sometimes cease at the moment when
lightning discharges take place1,21–23,34–38.

Although TGFs and gamma-ray glows are distinguished clearly
by duration, brightness, and timing with regard to lightning
discharges, both of them are thought to originate from a common
fundamental mechanism, called relativistic runaway electron
avalanches (RREAs39,40). According to Wilson’s hypothesis41,
seed electrons (provided by, e.g., cosmic rays) can be accelerated
up to an energy of tens of MeVs in strong electric fields, pro-
ducing secondary electrons. The number of multiplied and
accelerated electrons exponentially increases, and the accelerated
electrons finally emit bremsstrahlung gamma rays as they interact
with ambient atmospheric nuclei. Dwyer42 proposed additional
electron-seeding processes by positrons and backscattered gamma
rays into the RREA mechanism, called “relativistic feedback
model”. This model can achieve a higher multiplication factor
than that of a RREA alone, and thus are thought to explain
extraordinarily high brightness of TGFs.

Despite an increasing number of respective observation sam-
ples of TGFs and gamma-ray glows, connections between them
remain poorly understood. This is primarily because there has
been no report of simultaneous detection of both, except for a
very recent short report on a marginal detection17. In this paper,
we report the first unequivocal simultaneous detection of them at
sea level and discuss its implications.

Results
Observation of high-energy phenomena in winter thunder-
storms. The Gamma-ray Observation of Winter Thunderclouds
(GROWTH) collaboration31,32,35,43 has been engaged with a
multi-point observation campaign of atmospheric high-energy
phenomena in coastal areas of Japan Sea14,44. Winter thunder-
storms in Japan are ideal targets to observe this type of phe-
nomena due to their unique characteristics; most notably typical
altitude of clouds is significantly lower than ordinary38,45,46,
which makes sea-level observations of gamma-ray glows viable.

We have developed portable radiation detectors dedicated to
the multi-point observation. They have a 25 cm × 8 cm × 2.5 cm

Bi4Ge3O12 (BGO) scintillation crystal coupled with two photo-
multiplier tubes (PMTs; HAMAMATSU R1924A). Outputs from
the PMTs are amplified, and then read out by a 50MHz digitiser
onboard a data acquisition system. The data acquisition system
stores 20-μs waveforms of the amplified analogue outputs once a
pulse is detected, and extracts the maximum and minimum value
as well as the timing of the pulse (see also Detector calibration).
The maximum value corresponds to the energies of the pulse, and
the minimum the analogue baseline voltage. The data acquisition
system also records counts of discarded photon events due to
buffer overflow, which are used for dead-time correction. Three
detectors were deployed at three observation sites in Kanazawa
City, the capital of Ishikawa Prefecture, by the Japan Sea coast
(Fig. 1) and have been operated since October 2016.

Lightning discharges were monitored by a broadband low-
frequency (LF: 0.8–500 kHz) lightning mapping network (here-
after LF network), for which detectors are installed along Toyama
Bay and in Noto peninsula. Another receiver in the extreme-low-
frequency band (ELF: 1–100 Hz) is installed at Kuju, as
summarised in the section Radio observations. We also utilise
lightning location data of Japanese Lightning Detection Network
(JLDN) operated by Franklin Japan Co., Ltd.

Detection of gamma-ray glow and downward TGF. On 9
January 2018, two of our detectors shown in Fig. 1 recorded
gamma-ray glows. Figure 2a, b shows long-term count-rate his-
tories of detectors A and B, respectively. At around 17:54 in
coordinated universal time (UTC), detector A at Kanazawa Izu-
migaoka High School (36.538°N, 136.649°E) recorded a radiation
increase for ~60 s. Then, ~30 s later, detector B at Kanazawa
University High School (36.539°N, 136.664°E, 1.3 km east from
detector A) also recorded a gamma-ray glow. No radiation
enhancements were observed by detector C at Kanazawa Uni-
versity Kakuma Campus (36.546°N, 136.709°E; 4 km from
detector B) in the period. The glow then suddenly terminated,
coincident with a lightning discharge, while it was still being
observed by detector B.

An snapshot image of the X-band radar network at 17:55 shows
a heavy precipitation area, corresponding to a thundercloud,
located between detectors A and B (Fig. 1a). The radar data
suggest that the thundercloud passed over the two detectors
towards east-northeast with a speed of 19.3 ± 1.4 m s−1 (see Wind
estimation with X-band radar). Since the temporal separation
between the glow detection by the two detectors is consistent with
the time for the thundercloud to travel the distance between
the two detectors, we consider that the gamma-ray glows
recorded by the two detectors are from the same cloud and
hence of the same origin.

At the same time as the glow termination and the lightning
discharge, both detectors A and B recorded a short-duration
radiation burst lasting for ~200 ms simultaneously. The count-
rate profiles of the 200-ms-lasting short burst shown in Fig. 2c, d
exhibit a steep rise and decay with time constants of 52.0 ± 4.9
and 59.2 ± 1.7 ms for detectors A and B, respectively. Combining
the timing analysis with spectral analysis (see Gamma-ray
emission originating from neutrons), the short burst is found to
originate from neutron captures by atmospheric nitrogen nuclei,
which Rutjes et al.18 predicted as “TGF afterglow”, and Enoto
et al.14 observationally demonstrated. In addition, detector B
recorded a faint annihilation emission at 511 keV for 10 s after
the short burst (see Positron production by beta-plus decay).
These features imply that atmospheric photonuclear reactions
such as 14N+ γ→ 13N+ n and 16O+ γ→ 15O+ n took place
coincident with the lightning discharge, as discussed in Bowers
et al.13 and Enoto et al.14.
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Figure 3a, b shows the maximum and minimum waveform
values of photon events during the short burst recorded by
detectors A and B, respectively. At the very beginning of the
short burst, both detectors A and B recorded saturated pulses
(the maximum values exceeding >4 V), and then significant
negative values of the baseline (the minimum values) called
“undershoot” for ~10 ms. Although detector B failed to acquire
the main part of the undershoot due to buffer overflow in the data
acquisition system, it recorded the saturated pulses and the last
part of the undershoot. As demonstrated in Methods: Initial flash
of Enoto et al.14, this feature manifests the existence of an
extremely large energy deposit (much more than hundreds of

MeVs) in the scintillation crystal within a few milliseconds, which
is a clear sign of a downward TGF. In the following analysis
we employ an elapsed time t from the onset of the downward
TGF at 17:54:50.308892 UTC, recorded by detector B.

The LF network recorded a consecutive series of waveforms
of the lightning discharge lasting for ~400 ms (Fig. 3c). The
downward TGF coincided with a large-amplitude pulse at the
initial phase of the lightning discharge within 10 μs (Fig. 3d).
We detected four or so precursory pulses shortly before the large-
amplitude pulse. No pulses had been detected before the
precursory pulses by the LF network. The ELF measurement
also confirmed that the associated ELF pulse was coming from
the LF source. In addition, JLDN also reported a negative
intracloud/intercloud (IC) discharge of −197 kA at t=−13 μs,
which is temporally associated with the large-amplitude pulse.

Figure 1b shows the source positions of the large-amplitude
and precursory pulses determined by the LF network. At the
beginning, the small precursory pulses took place in a
southwest region less than 3 km away from detector B. Then,
the main large-amplitude pulse (the fifth one in Figs. 1b and 3c)
occurred 0.6 km southwest of detector B at t=−5.5 μs. JLDN
also located the large-amplitude pulse within 0.9 km from
detector B. These temporal and spatial correlations lead us to
conclude that the large-amplitude LF pulse is associated with
the downward TGF.

Production mechanism of gamma-ray glow. The multi-point
observation enables us to investigate characteristics of the
gamma-ray glow preceding the lightning initiation and the
downward TGF. First, we perform spectral analysis. Figure 4
shows the background-subtracted gamma-ray energy spectra,
extracted from −69 s < t <−39 s and −30 s < t <−10 s for detec-
tors A and B, respectively. The detector response function is
calculated with the GEANT4 Monte Carlo simulation frame-
work47, and is convolved with a model spectrum in spectral fit-
ting using the XSPEC package48. The observed spectra, of which
instrumental responses are corrected, are found to be well
explained by an empirical power-law function with an expo-
nential cutoff, ε−Γexp[(−ε/εcut)α], where ε, Γ, εcut, and α are the
photon energy (MeV), power-law photon index, cutoff energy
(MeV), and cutoff index, respectively. The best-fitting parameters
are Γ ¼ 0:90þ0:06

�0:08 and 1:02þ0:04
�0:05, εcut ¼ 6:4þ1:0

�1:1 and 8:5þ0:8
�0:9 MeV,
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α ¼ 1:21þ0:15
�0:14 and 1:43þ0:15

�0:14, and the 0.4–20.0 MeV incident
gamma-ray flux of 1:5þ0:7

�0:5 ´ 10
�5 and 2:4þ0:7

�0:6 ´ 10
�5 ergs cm−2 s−1

on average over −69 s < t <−39 s and −30 s < t <−10 s integra-
tion periods for detectors A and B, respectively. Here and after, all
the errors are statistical at 1σ confidence level, unless otherwise
mentioned.

We then perform another set of Monte Carlo simulations,
using GEANT4, and compare the obtained energy spectra and
count-rate histories with the simulated ones to investigate
atmospheric interactions and propagation of electrons and
gamma rays (see Simulation of gamma-ray glow). We find a
model of spatial and energy spectral distribution for avalanche
electrons in the RREA region which can reproduce both the
obtained gamma-ray spectra and count-rate histories, and
summarise the results in Figs. 1 and 4. The best-fit value of the
RREA terminus altitude hbase is 400 m, which means the electron
avalanche took place in the lower part of the winter thundercloud,
and the offsets from the centre of the RREA region are 540 and
80 m for detectors A and B, respectively. The electron flux
distribution is consistent with being proportional to a function
of a distance from the RREA centre r, exp(−r/150 m), providing
the circularly symmetric distribution. Figure 1b shows the
centre position of the RREA region at the moment of the
termination. Normalising the simulation result, we estimate
the total production rate of 1–50MeV avalanche electrons to be
3.66 × 1012 electrons s−1. The electron flux F(r, ε) at the terminus
of RREA is also estimated to be a function of r and ε

Fðr; εÞ ¼ 4:1 ´ 102 exp � r
150m

� �
exp � ε

7:3MeV

� �
electrons cm�2 s�1 MeV�1:

ð1Þ
This model reproduces the observed count-rate histories

and spectra, except the increase in the count rate of detector B
during −5 s < t < 0 s. This period is discussed in the section
Abrupt increase in count rates of gamma-ray glow before
downward TGF.

Let us consider the electron multiplication factor M = FRREA/
Fseed, where FRREA and Fseed are the average electron flux at the
RREA terminus and seed electron flux, respectively. Integrating
Eq. (1) yields the 0.3–50MeV average flux within r= 150 m of
FRREA= 7.5 × 102 electrons cm−2 s−1. Assuming that the seed
electrons are mainly produced by cosmic rays, the 0.3–50MeV
seed electron flux is a function of a vertical acceleration length L
and hbase given by

FseedðLÞ ¼ 2:56 ´ 10�3exp ðLþ hbaseÞ=1890m½ �electrons cm�2 s�1

ð2Þ
(see Seed electrons). The multiplication factor M is thus a
function of L, with the fixed hbase (400 m).

In the RREA region, electron flux is known to increase39

exponentially as a function of L, FRREA= Fseed exp(L/λ), assuming
that change of the vertical atmospheric pressure is negligible for
the RREA processes at the low altitude. The avalanche length λ
is empirically determined (see ref. 49 and references therein) to
be λ= 7.3 MeV/(eE− 0.276MeVm−1), where eE is a product of
the elementary charge and strength of the electric field. The value
of λ is then calculated to be 304, 99, and 59 m for E= 0.3, 0.35,
and 0.4 MVm−1, respectively. We note that the set of the trial
values of E up to 0.4 MVm−1 we have assumed is suggested to be
plausible inside thunderclouds39. Therefore, combining M(L)=
FRREA/Fseed(L)= exp(L/λ), L and M are derived to be L= 3240,
1160, and 710 m, M= 4.3 × 104, 1.3 × 105, and 1.6 × 105 for E=
0.3, 0.35, and 0.4 MVm−1, respectively.

As Dwyer50 pointed out, the multiplication factor would not
exceed ~105 in the RREA-only case because thunderclouds

cannot maintain an acceleration length required for it. Given that
L can reach twice as high as the typical diameter of the RREA
region50, L < 600 m is required in this case, where the typical
radius r= 150 m is employed. The 0.3 MVm−1 case is not
plausible because the required acceleration length L= 3240m
cannot be maintained inside the thundercloud. In the other cases,
it is necessary to take into account the relativistic feedback
processes to explain the estimated avalanche multiplication
factor. The relativistic feedback processes are parameterised with
a feedback factor γ, the fraction of the seed electrons provided
by the steady-state relativistic feedback processes50. The flux of
runaway electrons is then modified as FRREA= Fseed(L) exp(L/λ)/
(1− γ). Figure 5 shows this relation between L and γ to explain
the observed flux at the RREA terminus. To satisfy the condition
L < 600 m, γ should be larger than 0.998 and 0.846 for 0.35
and 0.4 MVm−1, respectively. This suggests that the number of
feedback-origin seed electrons is higher than that of cosmic-ray
seed electrons by a factor of >5.5 for our event.

Abrupt increase in count rates of gamma-ray glow before TGF.
The count-rate history of detector B exhibited an additional
increase during −5 < t <−0 s (Fig. 6a). Figure 6b shows the ratio of
the simulated model to the observed history. Although
the observed history is well reproduced by the simulation up to
t=−5 s, the observed count rate is twice as high as the simulation
in −5 s < t <−0 s. Figure 6c shows the three energy spectra
extracted from the time regions of −10 s < t <−5 s, −5 s < t <−2 s,
and −2 s < t < 0 s. All the spectra show a power-law function with
an exponential cutoff, indicating that bremsstrahlung is still the
main process of gamma-ray production. Since our simulations fail
to reproduce this increase in count-rate, we speculate that the
increase was caused by a fluctuation of the intrinsic electron fluxes,
rather than by the movement of the RREA region with the ambient
wind flow.

Based on the working hypothesis of the speculated increase
of the accelerated electron flux, at least one of the following
is required to have taken place: (1) stronger electric fields of the
RREA region, (2) longer acceleration length, and/or (3) increase
in the feedback factor γ. However, since lightning did not occur
during this period (−5 s < t < 0 s), atmospheric mechanism could
not drastically change the meteorological conditions, such as
electric fields and acceleration length, within 5 s. We thus
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conjecture that temporal variations of the relativistic feedback
processes played an important role for the electron flux increase,
then the abrupt rise of gamma rays in the 5-s period before the
lightning discharge. Assuming the electric field of 0.4 MVm−1,
the doubled rate of avalanche electrons can be explained by
increasing γ from 0.846 to 0.923.

The RREA and relativistic feedback processes remained stable
until t=−5 s; this state corresponds to the “steady state” of
relativistic feedback as defined by Dwyer50, namely γ < 1. In
general, when γ exceeds 1, an electron flux would spontaneously
increase, and an RREA region should collapse. The timescale of
the flux increase depends on the types of the relativistic feedback
processes. The feedback process by positrons can discharge RREA
regions within microseconds50. This timescale is close to that of
TGFs, and is much shorter than that of the observed abrupt
increase (i.e. 5 s). Alternatively, the feedback by backscattered

X-rays may trigger a second-order discharge in RREA regions50.
At present, even though the 5-s abrupt flux rise seems to be of
great importance, its origin is yet to be understood.

Discussion
To conclude the relation between the gamma-ray glow and the
downward TGF, verifying their temporal and positional coin-
cidence will give a strong clue. Our observation cannot clarify
whether the glow termination or the downward TGF took place
first because these phenomena seemed to be slightly overlapped.
On the other hand, the positional coincidence of the gamma-ray
glow and the downward TGF in the present case is precisely
determined owing to the multiple gamma-ray detectors and the
LF network. The discussion in the section Production mechanism
of gamma-ray glow suggests that the gamma-ray glow ceased
when the source cloud was moving 130 m southwest of detector B
(Fig. 1b). Also, the TGF-associated LF pulse was located within
0.5 km from detector B. Therefore, it is clear that the two phe-
nomena are physically related to one another.

Our interpretation of the observed gamma-ray glow suggests
that the electron acceleration site should have electric fields of
0.35 MVm−1 or higher in order to achieve the high electron
multiplication factor of >105 with a plausible acceleration length.
In such highly electrified regions, TGFs are thought to initiate
more easily than in other less-electrified regions as Smith et al.17

suggested. From another point of view, we speculate that the
avalanche electrons of the gamma-ray glow can behave as seed
electrons of the downward TGF. At the point where the TGF-
associated LF pulse was located (point 5 in Fig. 1b), the 0.3–50
MeV electron flux at 400 m altitude is estimated to be 1.7 × 102

electrons cm−2 s−1. By comparing this flux with that of the
cosmic-ray-induced seed electrons (the canonical seed electron
source), it is suggested that the highly-electrified region respon-
sible for the gamma-ray glow can be the dominant source of seed
electrons for the TGF which occurs in the close proximity of the
gamma-ray glow. In addition, the abrupt count-rate increase
monitored by detector B before the TGF (see section Abrupt
increase in count rates of gamma-ray glow before downward
TGF) suggests additional production of avalanche electrons for
the gamma-ray glow, and might have predicted drastic changes in
the electrified region such as the lightning discharge and the TGF.

In the present high-energy event, the discussion above suggests
a possibility that the high electron current in the gamma-ray glow
assisted the initiation of the downward TGF. However, it still
remains observationally unclear how gamma-ray glows and TGFs
are related with each other in general. Among an increasing
sample of glow terminations, TGF-associated events are still quite
rare, i.e. only Smith et al.17 and the present event. For example, a
termination event during a winter thunderstorm in 2017 (ref. 38)
was associated with an intracloud/intercloud discharge but not
related with any signals for TGF-like emissions. As another
example, a TGF-like intensive emission associated with photo-
nuclear reactions was reported14, where no gamma-ray glows
were recorded before the event. In these cases, we lack sufficient
evidences due to our present sparse observation sites on the
ground to conclude that glow terminations are not always asso-
ciated with TGFs. Our future gamma-ray monitoring network
combined with radio-frequency lightning mapping systems will
give a clue to reveal the relation between TGFs and gamma-
ray glows.

In summary, we detected a gamma-ray glow, terminated with a
downward TGF which triggered atmospheric photonuclear
reactions. The gamma-ray glow was so bright that the relativistic
feedback processes are required. Although we cannot determine
whether the glow termination or the downward TGF occurred
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first, the two high-energy phenomena in the atmosphere took
place in an identical electrified region of a winter thundercloud,
and hence are clearly related to each other in the present case.

Methods
Detector calibration. Energy calibration of the detectors was performed to convert
the maximum value of a pulse into photon energy. We measured the centre of
environmental background lines of 40K (1.46 MeV) and 208Tl (2.61 MeV), and
built a linear calibration function which is utilised to assign the energy of each
photon. All the detectors record 0.4–20.0 MeV gamma rays. See also Instrumental
calibration in Enoto et al.14 for details.

Absolute timing is conditioned by pulse-per-second signals of the Global
Positioning System (GPS). The timing-assignment logic employed from 2017 to
2018 winter provides absolute timing accuracy of each photon better than 1 μs.
However, detector A failed to receive the GPS signals during the experiment.
Instead, we performed the calibration of detector A, using the internal clock time
with ~1 s accuracy, and then corrected the absolute timing so that the detection
time of the downward TGF matches that with detector B.

Wind estimation with X-band radar. We utilised data of eXtended RAdar
Information Network (XRAIN). XRAIN is a polarimetric weather radar network in
the X band and has a spatial resolution of 280 m (east–west) × 230 m (north–south)
mesh. It records two-dimensional precipitation maps with a 1-min interval. XRAIN
also obtains three-dimensional maps of radar echoes and particle types with a 5-
min interval by the constant-altitude plan position indicator technique. However,
the three-dimensional data are not utilised in the present paper because the XRAIN
observations have a moderate spatial resolution of altitude (≥1 km), which is
insufficient to discuss charge structures in the thundercloud.

Wind velocity and direction are estimated by overlaying and shifting
precipitation maps at different time. First, 11 maps from 17:50 to 18:00 were
extracted in the range of 36.4°N–36.7°N, 136.4°E–136.8°E. We then took a pair of
maps with a 5-min interval (six pairs in total), and calculated the sum of
precipitation residual at each mesh, given by Σi;jðP1

ij � P2
ijÞ2, where P1

ij and P2
ij are

precipitation at each mesh on each map, and i and j are mesh indexes. With trial
shifting of one map with several steps of the spatial resolution for four directions,
we searched for the position which takes the minimum residual sum. The distance
and direction for which the cloud moved in 5 min can be estimated from the
amount of the map shift at the point of the minimum residual sum. Consequently,
the wind direction and velocity at the moment of the glow detection were
determined to be west-northwestwards and 19.3 ± 0.9 (systematic) ± 1.1 (statistic)
m s−1, respectively. Here, the quoted statistical error was calculated from the the
standard deviation (1σ) of six pairs. The systematic error was determined by the
mesh size and temporal interval of the map pair. The wind velocity with the overall
error is then calculated to be 19.3 ± 1.4 m s−1, where the standard error
propagation in quadrature between the systematic and statistical errors is assumed
to hold. Since the statistic error is smaller than 10% and is comparable with the
systematic error, it is reasonable to assume that the wind parameters did not
change considerably during the glow observation.

Gamma-ray emission originating from neutrons. Photonuclear reactions such as
14N+ γ→ 13N+ n and 16O+ γ→ 15O+ n expel ~10MeV neutrons from atmo-
spheric nitrogen and oxygen nuclei51–53. The photoneutrons gradually lose their
kinetic energy via elastic scatterings, and are eventually captured by atmospheric
nuclei such as 14N. In the dominant reaction 14N+ n → 15N+ γ, 15N nuclei in
excited states emit various de-excitation gamma-ray lines up to 10.8 MeV. In
addition, de-excitation gamma rays from other nuclei such as Si and Al should be
also emitted when photoneutrons were captured by ambient nuclei in soil, build-
ings, and components of the detectors. These de-excitation gamma rays originating
from neutron captures are thought to compose the short burst14,18.

The timescale of the short burst is determined by neutron thermalisation13,14,18.
A numerical calculation predicts the neutron-capturing rate of exp(−t/τ) for 5 ms
< t < 120 ms, where t is the elapsed time from the onset of the TGF and τ ≈ 56 ms is
the decay constant14. The count-rate histories of the observed burst have decay
constants of 52.0 ± 4.9 and 59.2 ± 1.7 ms for detectors A and B, respectively. These
results are consistent with the calculation.

Supplementary Fig. 1 shows the energy spectra of the burst with detectors A and
B. Enoto et al.14 simulated the de-excitation emission, considering atmospheric
scattering of the gamma rays and moderate energy resolution of BGO crystals. The
emission model from 15N and ambient nuclei, such as Al and Si, well reproduces
the results of both detectors A and B. From the spectral and temporal analyses, we
confirm that the observed short burst is caused by neutrons produced via
atmospheric photonuclear reactions.

Positron production by beta-plus decay. After neutrons are expelled from 14N
and 16O, unstable nuclei 13N and 15O start emitting positrons via β+ decay with
half-lives of 10 and 2 min, respectively. Positrons immediately annihilate and emit
511 keV annihilation gamma rays. Supplementary Fig. 2a–d shows count-rate
histories in the 0.4–0.65 and 0.65–30.0 MeV bands. Whereas detector A recorded

no enhancements after the short burst, detector B recorded an afterglow in the
0.4–0.65 MeV band for the period 0 s < t < 10 s. The count rates decreased with a
decay constant of 6.0 ± 2.1 s. The background-subtracted photon count in the
0.4–0.65 MeV band for 1 s < t < 10 s is (2.0 ± 0.4) × 102 photons. The background-
subtracted energy spectrum is shown in Supplementary Fig. 2e. The centre energy
of the line emission is 528 ± 14 keV, which is consistent with 511 keV of the
annihilation line within error.

These results lead us to conclude that a positron-emitting region filled with 13N
and 15O were produced in the atmosphere by the photonuclear reactions, and then
passed over detector B flown by the ambient wind flow14. Considering that the
count-rate history shows a monotonic decrease, the positron source might be
generated somewhere above detector B or downwind.

Radio observations. The LF network has five stations (Supplementary Fig. 3a).
Each station has a flat plate antenna sensitive to 0.8–500 kHz. Analogue outputs
from the antenna are sampled by a 4 MHz digitiser, whose absolute timing is
calibrated with the GPS signals. The LF network can locate radio pulses with the
time-of-arrival technique. Supplementary Fig. 3b, c shows the entire LF waveforms
of the observed lightning discharge.

The ELF receiver is installed in Kuju (33.059°N, 131.233°E) as a station of the
Global ELF Observation Network operated by Hokkaido University. The station
has two horizontal search coil magnetometers sensitive to 1–100 Hz magnetic-field
perturbations in the east–west and north–south directions. The analogue output is
sampled by a 400 Hz digitiser. The direction-of-arrival of the ELF pulses can be
confirmed with the magnetic-detection-finder technique. Supplementary Fig. 3d
shows the observed waveform in the ELF band.

The JLDN reported two other discharges besides the TGF-associated radio-
frequency pulse: an IC of −14 kA at t= 18.7 ms and a CG of −13 kA at t= 228.6
ms. Supplementary Fig. 3b, c shows the corresponding LF pulses. Since these pulses
occurred long after the observed TGF, we consider that they were not associated
with the high-energy phenomena.

Simulation of gamma-ray glow. We performed Monte Carlo simulations of
electron propagation in the atmosphere to reproduce the count-rate histories and
energy spectra, using GEANT4 (ref. 47). We assume that electron avalanches
towards the ground developed in thundercloud, and that the electron spectrum of
the RREA at the end of the region has the shape of exp(−ε/7.3 MeV)49, where ε is
the electron energy. We also assume that the distribution of the electron flux in the
avalanche region is circularly symmetric and has no intrinsic time fluctuation.
These assumption should be reasonable, given that the count-rate history of
detector A is symmetric about the peak, and that the wind velocity was approxi-
mately constant (see Wind estimation with X-band radar).

The energy spectra of bremsstrahlung gamma rays from the avalanche electrons
approximately follow ε−Γexp(−ε/7.3 MeV)54. The photon index Γ is determined
from the source altitude h and offset from the source centre. Count-rate histories
depend on the size of the RREA region, wind velocity, and h. The distribution of
gamma rays is more diffuse at a higher source altitude due to atmospheric
scattering, hence resulting in a longer and fainter gamma-ray glow.

First, we tested a disk-like region with a uniform electron flux, varying h and
disk radius in our simulations. Supplementary Fig. 4a shows some examples of the
simulation results at various altitudes. Comparing the simulation results with the
observation, h= 1500 m is required to reproduce the observed count-rate histories,
whereas Γ of the energy spectra indicates h= 900 m. Since any other conditions
cannot satisfy both the spectra and count-rate histories, this uniformed-disk model
is thus rejected in this analysis.

Then, we considered two disk-like models in which the spatial distribution of
the electron flux follows either of the two functions of a distance from the RREA
centre l: a Gaussian model, exp(−l2/2σ2) and an exponential model, exp(−l/L). The
parameters σ and L are free parameters, which denote the spatial extent of the
surface brightness of the emission.

We found that both models can reproduce the obtained count-rate histories and
spectra; The estimated parameters are h= 600 m and σ= 200 m for the Gaussian
model, and h= 400 m and L= 150 m for the exponential model. Comparing these
two best models, we found that the exponential model explains the observation
better, particularly for the count-rate histories of detector B (Supplementary
Fig. 4b). Therefore, we employ the exponential model as a working hypothesis to
interpret the observation.

Seed electrons. We assume that the seed electrons of the RREA processes are
mainly produced by cosmic rays. To calculate the electron fluxes of secondary
cosmic rays, we employed Excel-based Program for calculating Atmospheric
Cosmic-ray Spectrum (EXPACS)55,56, which calculates the flux and spectrum of
cosmic-ray particles as a function of an altitude, latitude, longitude, and solar
modulation. We extracted electron spectra at an altitude h of 300–2000 m, and then
integrated the spectra to obtain the electron fluxes Fseed in the energy range of
0.3–50.0MeV. The electron flux was found to increase exponentially as a positive
function of altitude, given by Fseed= 2.56 × 10−3 × exp(h/1890m) electrons cm−2 s−1.

Carlson et al.57 have considered 1 MeV seed electrons produced by cosmic
rays. Kelley et al.22 employed it, and derived the seed flux to be 0.25 cm−2 s−1 at
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14.1 km. Our calculation with EXPACS gives the electron flux at 14.1 km of
0.86 cm−2 s−1. Given that Carlson et al. took a more thorough approach than ours
by simulating the effective seeding efficiency for various particles, energies, and
geometries, our method might have overestimated the seed electron flux.
Regardless of the potential errors in our method, our conclusion that the gamma-
ray glow requires relativistic feedback is unaffected, because overestimation of the
seed flux, even if it was the case, would result in an underestimation of the
multiplication factor.

Data Availability
The data sets generated and analysed during the current study are available from the
corresponding author on request.
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