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A.A. CHILINGARIAN, G.Z. ZAZIAN

A CLASSIFICATION METHOD OF DETERMINATION OF THE MASS
COMPOSITION OF PRIMARY COSMIC RAYS IN THE ENERGY RANGE
E-)1015 eV

O

A method allowing to determine the mass composition of
primary cosmic radiation by means of simultaneous analysis of
model and experimental data is presented in this paper. The
most important part of this work is the quantitatiQe compar ison
of multivariate distributions and the use of methods of
nonparametric statistics for probabilily density estimation in
a multivariate space of features. To check the method offered,
events with E0>500Tev were generated by the Monte-Carlc method.
The ‘showers generated were preliminarily processed Aby
algorithms used in experimental data handling. The apparatus-
induced distortions of the measured EAS characteristics have
been taken into account. The method allous to select
experimental event initiated by primary protons and iron nuclei
with an efficiency of ~70-80% and to- determine the ﬁass

fy s . . 15 17
composition of primary cosmic rays (PCR) at 10 -10  eV._
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1. Introduction

The ambiguity of interpretation of the resuits of
experiments with cosmic rays is connected with both significant
gaps in our knowledge of the characteristics of hadron-nuclear
interactions at superaccelerator energies and indefiniteness of
the PCR composition.Yhe extra difficulties are due to indirect
experiments and hence, due to the use of nonte—Carlosimulations
of development and detection of different components of nuclear
electromagnetic cascades.

To research into hadron—nuclear interactions in CR, one
should know the type of Cascade-initiating incident particle.
Besides, the investigation of the mass composition of PCR is of
a particular interest in connection with the praoblem of the CR
origin.

At present the data available on the mass composition of PCR
in the energy range 1015—1017ev are obtained by detecting and
investigating the different components of EAS and r-familijes
detected by X-ray emulsion chambers (X-REC). and if the first
data set states a “normal composition® — extrapolation of pcRr
composition { 40% protons and 20% iron nuclei ) measured by
direct methods in the energy range 1011-1014ev f1.5]1, then the
data on y-famijly fluxes testify to a decrease of the protons
fraction in PCR at EO>10166U down to 15-20% and hence - g

dominance of irnn nuclei [2].

This contradiction, inexplicable ryet, may be due to



different experimental data handling methods. Besides, the

y—-family characteristics are more sensitive to the method of
strong interactions than the EAS ones, hence, variation of
model parameters can change the estimate of the proton and iron
nuclei fractions. The problem of relative dominance of iron
nuclei is very important, because the interpretation of the
experimental data ocbtained in UHE CR is based on the mass
composition of PCRr[B].

In this paper an approach is presented, which allows to
determine the mass composition of PCR by means of simultaneous
analysis of model and experimental data. The most important
part of the method is the gquantitative compar ison of
multivariate distributions and use of a nonparametric technique
to estimate the probability density in a multidimensional
feature space. As compared to the earlier used methods of
inverse problem solution, with the help of which the mass
composition of PCR was first determined in the energy Yange
Eo>lﬂfsev with sufficieqt quantitative certainty [sl, in the
proposed method the object of analysis is each particular event
(a point in the multivariate space of EAS parameters) rather
than alternative distributions of model‘and experimental data.
That is why, along with the averaéed characteristics. the
belonging of each event to a certain class is determined.

This approach was first used to gstimate the upper limit of
the iron nuglei . fraction according to the y-family
characteristics [5]- és opposed to Ref.[5], where events were
clasgified into two classes (AY50 and A4S0}, now it is possible
to classify events into an unlimited number of classes.

évents with EO?SOOTeU have been gimulated to check the
method proposed. The showers were vegistered at a depth of

7009/cm2. The model data uwere preliminarily handled ‘according

to algorithms used in the

data i
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i of
where E is incident particle energy 1N the laboratory system

coordinates (E is in Tev). Energy dependence of the mean

. 14 . . s
multiplicity of charged particles in hN jnteractions wa

approximated as?

N> =0.8171an+3.1271nE+10.27 (E is in TeV ) (2.2)
ch

The number of ‘secondaries was drawn acceording to KNO

distribution. It was taken that the mean transverse momentum of

secondaries increased with the energy according to

LH] =0.36(1+0_0231n(E/0.1)) (E is in TeV) (2.3)
t

diff nt s of distribution
For differe

aver P, differed and corresponded to the existing
t

econdaries <Pt> and the shape
accelerator

data.
Electromagnetic interaction were simulated as

bremsstrahlung and multiple Coulomb scattering

in Rref.[9].

pair production,

were taken into account. at the same time, it was assumed that

evelopment of electron—photon cascades is due tO

attering. To calculate the average FEAS

transversal d

only multiple Coulomb sC

i ’ ae
characteristics, e have used the approximated formul

obtained in ref.[10].

3. Comparison of EAS single characteristics

and choice of Optimal Features

To choose features most sensitive to the PCR composition,

mpared the single characteristics of EAS initiated

The following EAS

there were Co

by primary protons and _iron nuclei .

i : 1 ‘of
characteristics have been considered: the total number

electrons Ne, the total number of muons with EH)SGev. the EAS
age parameter S, the total number, energy, mean energy, average
distance to EAS cores and dispersion of spatial and energy
distributions of muons with E“)ZOOGeU and hadrons with
Eh)2OOGeU in EAS and the linear regression coefficients of
spatial and energy distributions of meons and hadrons
(E=CI+C2R ).

The results of comparison of single EAS characteristics are
summarized in Figs.l-4. A quantitative comparison of wvarious
features is presented in Table 1, where the P values of
statistical tests of comparison of samples from univariate
distributions as well as the Bhattacharya distance between the
samples are given. The Student, Kolmogorov, Mann-Whitney tests
have been used. It follows from these data that most
appropriate feature to determine EAS composition are the
high—energy . muon characteristics. The hadron component
characteristics are less sensitive to the primary particle type
{the higher the P-values of the test, the stronger the
difference betwsen the corresponding distributions). 1In this
paper we have used EAS characteristics only (Ne.N“ (é)SGeU),
S). Though the sensitivity of Ne and S to the primary particle
type is low, however, due to different degree of -correlation
between Ne'Nu and S for events initiated by primary protons and
iron nuclei, as is seen from Table 2 and 3., the use of all the
threg EAS characteristics essentially improves the event
classification reliability. The choice of these characteristics
is also owing to their relatively low sensitivity to strong
interaction characteristics, which allows to hope for obtaining

a model- independent'inference on the PCR mass composition.
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4. Classification of the Distribution Mixture

Let us consider the stochastic mechaniem (a4,9)  which

: . - . . -+
generates the observation v in a multivariate feature space (v

is a d-dimensional vector of values measured in experiment, d
is dimensionality of the feature space). The basic event space
A is a combination of events from different primary nuclei. We
know no law of nature like (A,P), that is why, to determine a
probability metric on A, the total Monte-Carlic simulation of
the phenomenon under investigation is performed, including
experimental data registration and handling.

The set of d-dimensional U veciors obtained in simulations

is the simular analog of the experimentally measured values of

0. But, as opposed to experimental data, it is known to which.

of the alternative classes each of the events belongs. These
"labeled® events include a priori information about dynamics of
the process under ™ investigation, which is given in a
nonparametric form, as- finite size samples. The sequence

{thj}, where i=1,M Jj=1.,L, tj is class index, we usually

TS’
call a training series or sample (TS) which is also denoted by

(AT

Since both, physical processes of particle production and
those of registration are stochastic and the information about
the phenomena under investigation is smeared cut, the data

analysis is uncertain in the sense that one need not wait for

-event separation ~ into compact nonover lapping groups

corresponding to different primary nuclei. The only thing we
can require when classifying experimental data by v ious
primary nuclei is to minimize the losses due to incorrect
classification to some degree and to ensure use of a priori

information completely. Such a procedure is the Bayes decision

rule with nonparametric estimation of the multivariate
probability density function, which, when using a simple loss
function (the loss is zero in case of correct classification

and is the same at any other error), takes the form:

A = n(v.ﬁ.ﬁ)):argmax{P(Ai/v)} . i=1,L (4.1)

-~

where P(Ai/v)~PiP(v/ﬁi) are a posterior densities, B(v/ﬂi) are
conditional densities which are estimated by TS (A.P) using one
of many nonparametric methods available {11, L is the number
of groups of nuclei.

Iqitial {a priori) wvalues of Pi are taken equal. The
monograph [10] is devoted ta the interplay of a priori and
experimental information in fraction estimation problems. Here
we shall not go into discussion of competence of the choice of
a uniform a priori distribution, but only mention that at such
a choice the a posterior probability and hence, the results of
classification will be totally defined By experimental
information, which seems reasonable to us ih the given physical
task.

To estimate conditional densities, we used Parzen-s method
with automatic kernel width adaptation. In this method some
probability density values are calculated which correspond to
different wvalues of method parameters. Then the sequence
obtained is ordered and the median of this sequence is chosen
as final estimate. Depending on the value of the probability
density in tﬁe vicinity of ¥, due to stabilizing properties of
thq median, each time we’ll choose an estimate with' a width
most fitting for that region [13]. The probability density is

estimated by:



Mi —r2/h
n/2 n

P(U/A.L)=1/(2n h'lEe ’ ¥; »i=1,L (4.2)
=1

1]

where n is the feature space dimensionality, Miis the number of
: i— class, r, is distance to the Jj-th
vectors of the i—-th TS ;

neighbour in the Mahalanobis metric:
T -1
r =(V-U_ YR (V-U.), (4.3)
N J J

uheré R is a sampling covariance matrix, uj are the events
weichts, h is the kernel width.

The classification methods, like all the statistical omnes,
include the procedure quality test as a necessary element. This
stage beside all the others is also necessary for determination
of the primary composition. The moét natural procedure quality
estimate is errvor probability which depends on both the degree
of overlapping of alternative multivariate distributions and
the decision rule beina .used (Baves decision rules provide

minimum error probability (EP) as compared to any octher one):

EP = R, =E{6n(v.A. D)1}, (4.4}

where

0, at correct classification
oIn(v,a.P) = 1, otherwise

and E stands for mathematical expectation. The expectation is
-taken aver all possible samples of valume M and over the whole
d-dimensional space of measured values.

. Since we do not exactly know to what class the experimental

vectors belong, the estimate of RH we obtain via TS:

10

- Mrs

Rn=1/HTS iEIS{tj.n(ui,n,il)} {4.5)

i.e we classify the {Ui} TS and check correctness of
classification over the index of the class tj' J=1,L. However,
as numerous investigations have shown (e.g.,[151), this

estimate is systematically biased and hence, a cross-validation

estimation is preferable

™
s

e -
Ry =1/M. i§19{tJ.U(Ui-ﬂ.5% i))} ' (4,8)

where ﬂ.ﬁ% i) is a8 TS with a removed i-th element, which is

classified. This estimate is unbiased and has an essentially

smaller r.m.s. deviation. The advantage of R: is especially
notable when the feature space has a higher dimensionality

[15].

Note, that we have the possibility to estimate the errors

probability of wvarious types by imposing to classificatiaon

various TS classes -~ {Ui'tj}' j=1,L, L 1is the number of

classes.

By Rij we denote the probability for classification of the

i-th class events as belonging to the J-th claus
(misclassification).
Now let us estimate the a posterior fraction of various

kernel types in the incident flux.

It is known [1&} fhat the best estimate of a posterior
fraction (in case of uniform a priori information and absence
gf classification errors) is the empirical fraction

e
P, =M, /M . .
i i tot : L



where M. is the number of events classified as initiated by the
i

tot
during experiment . It can be shown {see [17], where a formula

kernel group A, , M is the total number of events registered
i

for the case with t=2 i{is derived) that with acecount of
clagsification errors the fraction of various kernels can be
abtained as the solution of the following set of linear

equations:

L ~ L .
e
- =P, , i=t, L . {4.8)
(1 Ry P+ L PR =Py
J=i ki

In the first sum summation goes over j, in the second -over k.
All estimates of Rij and P? are obtained over one and the same
TS using the same decision rules.

The accuracy of estimates is defined by the TS size and
number of experimental data as well as by the wvalue of the
classification errors, which present the "quality” of
discrimination in the chosen feature subset. Note, that the set
(4.8) is a poorly defined system and at large wvalues of
classification errors the solutions of t he set are
unpredictable aod hence, the choice of a feature combination
providing a high percentage (240%) of correct classification is

a necessary preliminary stage.
5. The Bootstrap Procedure of Fraction Estimation
As we have shown in the previous section. to estimate the
fraction of wvarious kernels in an incident flux of cosmic
radiation, beside classification of an experimental sample by a

TS, it is also necessary to calculate any misclassification
.

coefficients, R, .. The error in determination of the fraction
12

12

of various ke%ne]s is a function of the errore' both from’
classification and in determlnatlon of R o

The possibility to decrease the b1as' and - ya?ianoé of-
mlsclassaflcatlon rates estimates was discussedlgin_ REFH[I?},
where it was mentioned that it IS possihle to ihp}ooe ‘fhe
accuracy of R, ij estimates, if the TS slze 19 Iorgol énoogh' fo .
separate the TS into 1ndependent subsamples. . 7

‘Unfortunately, time consumpt ion per model event geoofation
increases abruptly with energy and we have not to ekpeot"ﬁuch
modeI 1nf0rmat10n in the energy range E)loiseU o .

Thus, the problem of an eff1c1ent use- of the inFormafion
contained in simular results is as never actual for coam1c -ray
and accelerator physics, since the classical samp11ng models do."
not allow to extract the whole 1nformatxon carr1ed by a sampie.

The methods of sample control during handling are widoly:.
used io the last feuw years. . One  of .-fheoa 'is “the .
ieavg—one—oug—for—a—time test considered _in ) the .brovioos
section, which allows to decrease the samblo‘lbias.r é;‘mo;e:
éfficient procedure actiuély developing in both - aDplled .aod:o
theoretlcal respects in the last decade is the’ bootstrap .whicp':
lies in replication of the 1n1t1al sample very many times iby ’
means. of .random sampling w1th YepIacement The " thus ootained
conditionally independent bootstrap—replicas in. many Vresoeots
stand for independent samples from ‘the general populat1on
{(under the cohdition of sufflclently large size of the 'initial_‘

sample), In fact the bootstrap substitutes the unknown general

~population by a single sample, i.e. the idenlogy described in'

the sectzon 4 of this paper is folloued The theoret1ca1 -base:

of the bootstrap method is the analog of the central  Iimit’

'theorem (CLT) proved in Ref. [18}

13



when M,Bsw®, x

.Ap'{j E. (PB' #H) 4 t'snlxlt...xn } + 3 (t), .(5.1)

x  dre independent, identically distributed

1 M

:7-(110)' random quantities, &(t) o is- a normal { Gaussian)

stributi an : I stimates of the first and
distr}but}on‘ Hy ?ﬁ§,$H ;rg_sample e;-:tmar‘I :

B Lo % * {3 . i
s : = M is the Jj-th
.thg-second'mumgntg. Hg™ t uj/B o Hy r L9 ) i

j=1 = i=t

Bbofst}ap reblica's mean. And what is more, analogies between

‘sampling éﬁd the boofst%ap "are ‘wvalid also for many other

'éﬁa%iéfics.'ﬁefsrrihg cur ‘corvespondents to  the Ref_[19], we

-Asﬁbffly summarize the main idea of the new procedure: a new

* procedure - the_ boots?rapfmoments {dencted by E*,a*) ar

intradﬁéeﬂ; whiﬁh in Amanyrréases 'substitute the statistical
moheﬁta caIcuIatEa_abcording to a  distributiDh funcfion (in
'méstlcésesléf interest: it is unknown). . .

inAG to the fact that the bootstrap is very important for
high-enerqy physics, and to investigate its possibilities for

finite samples and a limited number of bootstrap replicas we

" have carried out an investigaiion with the purpose to calculate

tﬁe bootstrap expecfatibn (ijyhj - a CLT test, and calculation
of bootstrap exbectations'of the standard deviation of the mean
110 of random variables - 6§:ai/n. To do this we used samp%es
from the standard, normal distribution N(0,1); the sample size
varied between 25 and 1000, the number of bootstrae replicas in
a series was from 10 to Z000. The mean was calculated for each
bootstrap veplica and for each bootstrap series - the
bhootetrap-estimate of the mean standard deviation - 6*. _

A round of recalculations including 100 series of the same
size has been cérried out using.different initial samples; the

. P
cbhbtained data uwere averagad and the fmean-square dewlalions were
obht

calculated. The results of investigations, which are present in

Table 4, state the validity of CLT and consistency of using the

bootstrap expectation. Although the mathemat ical theorems were

proved for the asymptotic cases M,B+x, even with small sample

sizes and smal! number of bootstrap replicas. (M,B~50), the

obtained estimations fit to the expected theoretical ones.
There are two ways of distribution mixture. coefficient

estimation: i) to obtain the bootstrap estimate of the

. e , L. e . - .
misclassification coefficients Rij’ then classify and estimate

the fraction or ii) carry out fraction estimation over each

bootstrap replica, then obtain the fraction and the standard

deviation bootstrap expectation. The second way is preferable,

because obtaining af the standard deviation in the . first case

is time-consuming. It is encugh to say that the errors

propagation formulae obtained by the REDUCE program’ occﬂpy

several standard sheets in case of classification into four

classes.

In the end of this section let us fo?malize the bootstrap
method of the distribution mixture coefficient estimation. Let

us define the solution of the set {4.8) as:

-

- ~ . - R
p;p{pl,...Pl}=F{u.!D,n(v.A.Q) )R (5.2)
This solution is a complex function of experimental data and
the TS as well as the decision rule n being used. By several TS
bootstrap replicas we calculate the bootstrap expectation and

thé bootstrap standard deviation of the mixture coefficients

B which are used as estimates of the fraction of different

kernel garoups in the primary flux.

15



=24 27 and U~ wlth A= 50 56).

&. Results of Calculations

To test the method the generated events were agrouped in

‘two. The flTSt were. used to create a TS and the second - as
g pseudo experlmental events. The EAS characteristics (Ne,N“,S)
'.¥ were used ' in the " events cla951f1cat10n,' where events in

: d1fferent 'ffxed"inte?vals over NE were selected. The TS

con51sted of four classes in accordance with the primary kernel

.'type (psﬂrotons a—partlcles CNO-kernels with A=7-16. H-with

Table § presents the Bayes error matrix obtained as a result

- of a'iea§e~one;eut test-over TS. The diagonal elements of this
':matr:x show the probability for a correct events classification
e'and the nondiagonal elements -~ the probability for
"mlsc1a=s1f1cat10ns. It'is‘seen from Table 5 that the correct
: class;quatxonsrmake about 70-80% (classification of “boundary”
Téropbsrfnfbﬁens and iron group nnclei) is essentially better
-tnanzghat of.tﬁe intermediate groﬁps)-‘Note. that the accuracy

. of c1a551f1cat10n can be improved by selecting events at narrow

-'zen1th angles s (8 varies between 0 and 45 ).

Tabie & shows the recovered kernel fractions obtained by

Classification of model events for one interval over Ne. The

errors.presented are obtained by the bootstrap procedure.
' Fractiens of kernel groups given in EAS simulations (true
" fractions) are presented ibid. As is seen from this table., the

proposed method allows to determine the fraction of protons and

iron nuclei in the incident flux with quite a good accuracy. To

_improve the accuracy of determination of the fraction of

intermediate nuclei it is necessary to increase the size of TS.

In this work events pbtained by the same mocel are used as

control {pseudo-experimental ) and training sam Curing  the

experiméntaI data handling the ~model adeguacy test is a
necessary stage. The difficulty lies in the’ fact, that ‘the
changes both in the strong interaction model and in the mass

compos1t10n can lead to the same change of the observed values.

To overcome this ambiguity ome can use the ~self-consistency "

method developed in Ref_[5].
7 .Conclusion

The proposed method allows to select’ experiﬁentalj events‘
initiated by incident protons and nuclei with.an efficiency of -
~70-80% and determine the mass composition of PCR at enerqies
from 1015'ts 1017eU. The main advantages of the method propbsed
are: . '

i) its being a multivariate one, i.e. inclasion ) bf_
additional EAS parameters in the analysis'meet_no difficulties;

ii) individual analysis (event by event) - each experimental
event is an object of analysis - their béienging to a certain -
class and the error of statistical solutidn are determined;.

iii) a priori chosen probability family is not imposed on
data - the results of gsimulation are used directly during ‘the
process of statistical solutions. o

We hope that the use of the proposed method when handiing
the experimental data obtained at complex arrays will allow -to
get an unambiguous information about the character of strong
interactions at superaccelerator energies.

We are grateful to A.M. Dunaevsky and N.Kstamenov for useful
discussions and to E.A. Mamidjanian for stimulating interest in
the work.

gne of the authore {Z.6.7) aigo thanks #&.M. Dunasvsky for

nrovisicn of EAS simulation glgovithms.
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Table 1

P-values aof statistical tests of comparison of univariate
distfibutions of different characteristics of EAS initiated

. ‘o . 5 5
by primary protons and iron group nuclei.at 1-10 <Ne(2-10

Stud Kolm| M~U |R Bh

Ne- 2.835(1.021( 1.17| 0.002
N '( E“)S GeV) 23.64717.329|16.12} 0.433
[l .

S 7.044613.178| 6.60| 0.074

Np(EP>2OOVGeU) '125.435|7.553]16.34| 0.451

v Ep(E”)ZOO Gev}|15.217|5.582112.45] 0.18%9

(Ey)(E“)ZOO GeV)| 6.79215.528(11.13| 0.458

<RF>(EH)200 GeV ) 18.541 6.533114.36F 0.29%

Nh(Eh)2OO GeV) 4.717(2.400; 4.88] 0.248

r ErﬁEh)ZOO GeV)| 4.015|2.4609| 5.30| 0.495

(Eh)(Eh)2OO GeV)| 5.503|1.658) 3.44| 0.128

(Rh> 4 Eh) 200 GeV )| 5.903|3.395| &.73| 0.023
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Table 2

The coefficients of correlation between the characteristics

of the electron—photon and the muon components of EAS with

1-105(N <2‘105 from primary protons (the quantities marked
e .

with % correspond to mucns with EPSEOO GeV)

* * L% *
] N E E ? R ?
Ne M wo BRGS0 B

N | wxsx |o.393|-0.13210.145}0.108l0.01 [-G.180
N | 0.393|xxxxx! 0_443]0.838|0.717|0.044| 0.516

5 |—0.130[0.443] #xxxx|0.4658!0.44110.0379| 0.46%

'Nt o.ias 0.838| 0.448 xxxx%|0.896|0.1047 0.726
T E: 0.t08 0.717 0-411'0.896‘***** 0;476 gjess
(ﬁi) 0.010|C.044| ©.039[/0.104 6.476 xxxx¥% | 0.093
(R:> —0.18'0.516] 0.469|0.726|0.458|0.093| *x%xx*




Table 4
‘Table.3
' K Bootstrap expectations and bootstrap standard deviations

_ The coefficients of potrelatidn.betueénjthe.chafaéteristics of sampling statlistics

of the electron—photon and the mudh cbmpoﬁenfs of EAS with

i S e1aT ey e 1ac o . ‘ : , s
iL 1+107¢N_2+10" from primary -iron nuclei (the quantities i B 10 50 100 200
i S L . :
- .marked glth x?qorreqund to muons with Ey)zoo_GeU) . i E*{pb—pm} -0.0152| 0.0031}-0.0048|-0.0003
o ' o M=25
B ‘ _ ] 0*{pb-ym} 0.0639| 0.0251) 0.0174] ©.0160
2. T ’ - Sop % * | * * i
Al T LT N - |'N".] § - |N E . : = _
i AR AT FEE A I R L u (Fp) ‘Ry? . | ,570-2 E {5, 1} 0.1891| 0.1974]| 0.192%9| 0.1977
1 NI xxxx .[0.555 -0.205|0.353[0.366]0.252(-0.026 | ' ’ o {6, } 0.0560| 0.0300] o.c031| 0.0028
‘ 1Ny (0555 fxxxxx 'Q-i?s 0.830[0.820{0.375| 0.345 ; E*{ub-yﬁ} —0.0024 |-6.0023| 0.0003)-0.000%
clos ;Pﬁzog 0.195| wxxxx0.238[0.224 0.075| 0.224 ; M=50 o fu -u }| 0-0402 0.0227| 0.0149] 0.00%7
. -*‘ . .l 1T i N N H
"] Ny| ©-35310-830 0.238 xxxxx{0.97810.391| 0.633 1 6,,=0-1414| E {6, 0.1481| 0.1398] ©.1396| 0.1395
S A I A . - -
b Ey 0.366|0.820| 0.224]0.978]xxxxx|0_s56| 0.611 o {5 1} 0.0286| 0.0182| 0.0167| 0.0154
SR I B D €, dp -p }{-0.0171 -0.0010| 0.0004|-0.0008
.(EH}_'D.252,07375 - 0.075{0-391]0.566 | %xxxx| 0.213 . o :
1 ST VIS EACRR A I IR | - . M=100 o lu -u }| ©.0323 _0.0152] 0.0101] D.0066
| R,2|70:026]0.345] 0.22410.633]10.61110.213] wexkx ' N & =-o.1 | €5 1} | o.o897| 0.0959|{ 0.1000| 0.0988
- S RS o : : w0 % . : - :

6{6*} 0.0212| 0.0107| 0.00%97| 0.0086

{ continued )
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Table 4 {(continuation)

B 10 50 100 200
*{pb—um} 0.0038|-0.0017 [0.0001 {0 0000
M=200
*{yb—ym} 0.0231| 0.0107|0.0082 {0.0048
& =0.0707
200 {6* } 0.0593( 0.069210.0694 )0 _.0700
{3 0.0154| 0.0078[0_0063]|0_ 0049
E, {#, -1 }{-0.0018| 0.0007}0.0004 |0 .0003
M=500 a*{yb—ym} 0.0115| 0.0072(|0.0040|0_0032
&, =0.0447|E {& } 0.043 | 0.0452|0.0442|0.0444
500 %*
o {6* 3 0.0095| 0.0043{0.0033|0.0024
E*{pb—pm} 0.0038( 0.0001{0.0002|0.0003
M=1000 a*{pb—um} 0.00791 0.0050(G.0030|0 0022
61000=0.032 E {6* } 0.0322{ 0.0317|{0.0314|0.0315
o {8, ) 0.0072| 0.0033|0.0022|0_0017

Table 5

The Bayes ervor matrix obtained by the leave-one—out method,

5
by TS within the range 1'105(Ne<2'10

P CNG H VH

P [0.798|0.102[0.067|0.033

CNO(0.127(0.488(0.105]|0.080

H {0.072]0.113]0.6%91|0.124

VH {0.034{0.090(0.150|0.726

Table &

Recovered fractions of four groups of nuclei within

5
l‘IOS(Ne(Z'IO -

{W, -is a "true" fraction, W - a recovered one)
in ) ot N

NTS I"‘iil"- E*{wout} 0*{Nout}

p j20010.370 0.345 0.038

CNO[188{0.272 g.229 0.067 -

H 1194!0.168 0.232 0.057

VH!163(0.189 0.194 0.019
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Figure Captions

Fig.1 Distribution of the characteristics of EAS hadrons with
Eh)ZOOGeU.
¥ — primary protons, + — primary iron nuclei,
X - region of overlapping,
a) Total hadron number distribution,
b) Total hadron energy distribution,
c) The hadron mean energy distvibution in EaS,
d) Distribution of the average distance of hadrons to
EAS cores. '
Fig.2 PDistribution of the spatial and energy distributions
dispersion and the coefficients of E-R correlations of
hadrons with Eh>200 Gev.
* — primary protons, + — primary iron nuclei,
X - region of owverlapping.
Fig.3 Distribution of the characteristics of EAS muons with
E »200GeV.
[T
* - primary protons, + - primary iron nuclei,
X — region of overlapping,
a} Total muon number distribution,
b) TotalAmuon energ} distribution,
c) The muon mean energy distribution in EAS,
d) Distribution of the average distance of muons to
EAS cores. .
Fig.4 Distribution of the spatial and energy distributions
dispersion and the coefficients:of E-R correlations of
muons with Eh>200 Gev .
¥ — primary protons, + — Qrimary iron nuclei,

X - region af overlapping.
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